RESEARCH ARTICLE

Spread of Enterococcal Surface Protein in Antibiotic Resistant Entero-coccus faecium and Enterococcus faecalis isolates from Urinary Tract Infections

The Open Microbiology Journal 26 June 2015 RESEARCH ARTICLE DOI: 10.2174/1874285801509010014

Abstract

Enterococci rank among leading cause of nosocomial bacteremia and urinary tract infection in hospital and community acquired infections. Several traits that may contribute to enhanced virulence have been identified in Enterococci. Extracellular surface protein (Esp) is a virulence factor that contributes in biofilm formation and resistance to environmental stresses. In this study we aimed to determine occurrence of esp in E. faecium and E. faecalis isolates isolated from urinary tract infections and to investigate whether there is any correlation between presence of esp and antibiotic resistance. One hundred and sixty six isolates were collected from patients with UTI and after identification by biochemical and PCR, antibiotic resistances were examined. The presence of esp was investigated by primer-specific PCR. 43.3% of isolates identified as E. faecium and 56.7% as E. faecalis. The esp gene was found in 76.1% of E. faecium isolates and 77.9% of E. faecalis isolate. There were significant correlation between esp positive E. faecium and resistance to Vancomycin (p<0.01), also in E.faecalis we found correlation between esp positive and resistance to Ampicillin, Chloramphenicol and Tetracycline (p<0.01, p<0.01, p<0.01 respectively). Occurrence of esp in our isolates from urinary tract infection was high that indicates importance of this gene in urinary tract infections and shows importance of ability to forming biofilm and hydrophobicity of surface of Enterococci for causing urinary infection by Enterococci. Also, our finding showed significant correlation between resistance to antibiotics and presence of esp in Enterococci.

Keywords: Antibiotic resistance, e. faecium, e. faecalis, esp, urinary tract infection. .
Fulltext HTML PDF
1800
1801
1802
1803
1804