RESEARCH ARTICLE


Biodegradation of Selected Nigerian Fruit Peels by the use of a Non-pathogenic Rhizobium species CWP G34B



Bolatito Esther Boboye*, George Olarewaju Ajayi
Department of Microbiology, The Federal University of Technology, P. M. B. 704, Akure, Ondo State, Nigeria


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 724
Abstract HTML Views: 399
PDF Downloads: 140
Total Views/Downloads: 1263
Unique Statistics:

Full-Text HTML Views: 436
Abstract HTML Views: 250
PDF Downloads: 103
Total Views/Downloads: 789



© Boboye and Ajayi; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Microbiology, The Federal University of Technology, P. M. B. 704, Akure, Ondo State, Nigeria; E-mail: boboye_b@yahoo.com


Abstract

This study was carried out to determine the ability of Rhizobium species CWP G34B to degrade the peels of selected Nigerian fruits. The potential of the bacterium to digest some carbon sources (lactose, maltose, sucrose and mannitol) and peels of some Nigerian fruits (pineapple, orange, plantain, banana, pawpaw and mango fruits) was investigated by growing the organism on the substances separately after which DNSA reagent method was used to quantify glucose released into the medium. The results showed that the bacterium was able to degrade all the carbohydrates with the highest and the lowest glucose concentrations of 5.52 mg/ml for lactose and 0.50 mg/ml for mannitol. The carbohydrate-catabolic-enzyme (CCE) activity ranged from 0.169 mg/ml to 1.346 mg/ml glucose per mg/ml protein. Mannitol exhibited the highest CCE activity while the lowest activity was observed in the presence of sucrose. The amount of extracellular protein synthesized was highest (9.803 mg/ml) in the presence of maltose and lowest (0.925 mg/ml) in mannitol. The mean polygalacturonase activity was 0.54 unit/ml when the bacterium was grown in pectin in contrast to 0.28 unit/ml when it was grown in mannitol. The bacterium showed ability to breakdown the peels of the Nigerian fruits with the highest capability in banana and pineapple (0.42 and 0.41 mg/ml glucose per mg/ml protein respectively). The fruit-peel-degrading enzyme activity was lowest in orange peel (0.75 unit/ml).

Keywords:: Carbohydrate-catabolic-enzyme activity, Degradation, Fruit peels, Rhizobium species CWP G34B.