RESEARCH ARTICLE


Expression and Characterization of a Small, Xylan/Cellulose-degrading GH43 Protein Derived from Biofertilizer Metagenome



Atcha Oraintara1, 2, *, Pitak Bhunaonin1
1 Department of Microbiology, Faculty of Science, Khon Kean University, Khon Kaen, Thailand
2 Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand


Article Metrics

CrossRef Citations:
1
Total Statistics:

Full-Text HTML Views: 1053
Abstract HTML Views: 397
PDF Downloads: 396
ePub Downloads: 268
Total Views/Downloads: 2114
Unique Statistics:

Full-Text HTML Views: 660
Abstract HTML Views: 274
PDF Downloads: 332
ePub Downloads: 223
Total Views/Downloads: 1489



Creative Commons License
© 2022 Oraintara and Bhunaonin

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Microbiology, Faculty of Science, Khon Kean University, Khon Kaen, Thailand; E-mail:atcha@kku.ac.th


Abstract

Background:

A putative glycosyl hydrolase gene biof1_09 was identified from a metagenomic fosmid library of local biofertilizers in previous report [1]. The gene is renamed as gh43kk in this study.

Methods:

The gene gh43kk, encoding a putative β-D-xylosidase was amplified by polymerase chain reaction (PCR) and successfully cloned and expressed in Escherichia coli. The expressed recombinant protein was purified by metal affinity chromatography. Its properties were initially verified by enzyme assay and thin layer chromatography (TLC).

Results:

The purified recombinant protein showed the highest catalytic activities at acidic pH 4 and 50°C toward beechwood xylan, followed by carboxymethylcellulose (CMC). TLC analysis indicated a release of xylose and glucose when xylan and CMC were treated with Gh43kk protein, respectively, whereas glucose and cellobiose were detected when avicel, cellulose and filter paper were used as substrates, suggesting its dual function as xylanase with cellulase activity. The enzyme indicated great stability in a temperature between 10 to 50 °C and a wide range of pH from 4 to 8. Enzyme activity of Gh43kk was enhanced in the presence of magnesium and manganese ions, while calcium ions, Ethylenediaminetetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) inhibited the enzyme activity.

Conclusion:

These results suggest that Gh43kk could be a potential candidate for application in various bioconversion processes.

Keywords: Cellulase, GH43, Metagenome, Metagenomics library, Recombinant protein, Xylanase.