Matrix-assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a Reliable Tool to Identify Species of Catalase-negative Gram-positive Cocci not Belonging to the Streptococcus Genus



Marisa Almuzara1, *, Claudia Barberis1, Viviana Rojas Velázquez1, Maria Soledad Ramirez2, Angela Famiglietti1, Carlos Vay1
1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica Hospital de Clínicas José de San Martín Ciudad Autónoma de Buenos Aires, Argentina
2 Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA


Article Metrics

CrossRef Citations:
1
Total Statistics:

Full-Text HTML Views: 217
Abstract HTML Views: 253
PDF Downloads: 104
ePub Downloads: 56
Total Views/Downloads: 630
Unique Statistics:

Full-Text HTML Views: 151
Abstract HTML Views: 125
PDF Downloads: 71
ePub Downloads: 46
Total Views/Downloads: 393



© Almuzara et al.; Licensee Bentham Open

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0)(https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica Hospital de Clínicas José de San Martín Ciudad Autónoma de Buenos Aires, Argentina; Tel: +54 11 59508663; Fax: +54 11 59508691; E-mail: marisaalmuzara@gmail.com


Abstract

Objective:

To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates.

Methods:

All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and <1.700 no reliable identification) and lower cut-off scores (≥1.500 for genus level, ≥ 1.700 for species-level and score <1.500 no reliable identification) were considered for identification. A minimum difference of 10% between the top and next closest score was required for a different genus or species.

MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result.

When both methods gave discordant results, the 16S rDNA or sodA genes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S or sodA identification were considered incorrect.

Results:

Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained.

Conclusion:

The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis as Helcococcus, Abiotrophia, Granulicatella, among others. Nevertheless, expansion of the library, especially including more strains with different spectra on the same species might overcome potential “intraspecies” variability problems. Moreover, a decrease of the identification scores for species and genus-level identification must be considered since it may improve the MALDI-TOF MS accuracy.

Keywords: Catalase-negative gram-positive Cocci, Enterococcus spp, Identification, MALDI-TOF MS.