Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus

Roshanak Daie Ghazvini1, Ebrahim Kouhsari1, Ensieh Zibafar1, Seyed Jamal Hashemi1, 2, Abolfazl Amini3, Farhad Niknejad3, *
1 Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
3 Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 5754
Abstract HTML Views: 2787
PDF Downloads: 1046
ePub Downloads: 759
Total Views/Downloads: 10346
Unique Statistics:

Full-Text HTML Views: 2566
Abstract HTML Views: 1398
PDF Downloads: 718
ePub Downloads: 495
Total Views/Downloads: 5177

Creative Commons License
© Ghazvini et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Irann; Tel: +98-17-32421664; Fax: +98-17-32423630; E-mail:


Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB) against growth and aflatoxin production of toxigenic Aspergillus parasiticus. The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B1, B2, G1 and G2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB1, B2, G1 and G2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species.

Keywords: Aspergillus parasiticus, Aflatoxin, Antifungal activity, Bifidobacterium bifidum, Lactobacillus fermentum.