RESEARCH ARTICLE
Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase
Edwin D. Morales-Álvarez1, 2, †, Claudia M. Rivera-Hoyos1, 3, †, Patricia Landázuri1, *, Raúl A. Poutou-Piñales3, Aura M. Pedroza-Rodríguez4
Article Information
Identifiers and Pagination:
Year: 2016Volume: 10
First Page: 124
Last Page: 132
Publisher ID: TOMICROJ-10-124
DOI: 10.2174/1874285801610010124
Article History:
Received Date: 13/11/2015Revision Received Date: 9/2/2016
Acceptance Date: 13/2/2016
Electronic publication date: 31/05/2016
Collection year: 2016

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence.