The Saccharomyces cerevisiae Genes, AIM45, YGR207c/CIR1 and YOR356w/CIR2, Are Involved in Cellular Redox State Under Stress Conditions

João Lopes, Maria Joana Pinto, Aurora Rodrigues, Filipe Vasconcelos , Rui Oliveira*
CBMA (Centre of Molecular and Environmental Biology)/ Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 4156
Abstract HTML Views: 3097
PDF Downloads: 769
Total Views/Downloads: 8022
Unique Statistics:

Full-Text HTML Views: 1635
Abstract HTML Views: 1687
PDF Downloads: 527
Total Views/Downloads: 3849

Creative Commons License
© Lopes et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Centro de Biologia Molecular e Ambiental (CBMA)/ Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Tel: +351 253601512; Fax: +351 253678980; E-mail:


Mammalian electron transfer flavoproteins comprise a mitochondrial matrix heterodimer, and an electron transfer flavoprotein dehydrogenase localized in the mitochondrial inner membrane. Electrons from primary acyl-CoA dehydrogenases, of mitochondrial metabolism of fatty acids and amino acids, are transferred to the matricial heterodimer and, subsequently, to the electron transfer flavoprotein dehydrogenase, which transfers electrons to ubiquinone of the mitochondrial electron transport chain. Several evidences suggest that these proteins may convey electrons directly to molecular oxygen, yielding reactive oxygen species. In this work, we investigated phenotypes of the yeast mutants affected in the orthologous genes of the matrix heterodimer (AIM45 and YGR207c/CIR1) and of the electron transfer flavoprotein dehydrogenase (YOR356w/CIR2). The mutant strains aim45 and yor356w/cir2 displayed better growth on several non-fermentable carbon sources, which depended on the component of the electron transport chain that accepts the electrons resulting from its mitochondrial oxidation. Furthermore, upon heat shock, the mutant strains presented decreased intracellular oxidation, suggesting that these flavoproteins are a source of reactive oxygen species. Other phenotypes identified suggest that AIM45, YGR207c/CIR1 and YOR356w/CIR2 can protect cells from oxidative and heat stress, which encompass increased heat stress sensitivity, superoxide sensitivity, both only on non-fermentable carbon sources.

Keywords: Electron transfer flavoproteins (ETF), mitochondrion, intracellular oxidation under stress conditions. .