RESEARCH ARTICLE


IgG Endopeptidase SeMac does not Inhibit Opsonophagocytosis of Streptococcus equi Subspecies equi by Horse Polymorphonuclear Leukocytes



Mengyao Liu, Benfang Lei*
Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 1523
Abstract HTML Views: 1058
PDF Downloads: 235
Total Views/Downloads: 2816
Unique Statistics:

Full-Text HTML Views: 694
Abstract HTML Views: 716
PDF Downloads: 180
Total Views/Downloads: 1590



© Liu and Lei; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Veterinary Molecular Biology, Montana State University, P.O. Box 173610, Bozeman, Montana 59717, USA; Tel: 406-994-6389; Fax: 406-994-4303; E-mail: blei@montana.edu


Abstract

The secreted Mac protein made by group A Streptococcus (GAS) inhibits opsonophagocytosis of GAS by human polymorphonuclear leukocytes (PMNs). This protein also has the endopeptidase activity against human immunoglobulin G (IgG), and the Cys94, His262 and Asp284 are critical for the enzymatic activity. The horse pathogen Streptococcus equi subspecies equi produces a homologue of Mac (SeMac). SeMac was characterized to determine whether SeMac has IgG endopeptidase activity and inhibits opsonophagocytosis of S. equi by horse PMNs. The gene was cloned and recombinant SeMac was overexpressed in Escherichia coli and purified to homogeneity. Mice with experimental S. equi infection and horses with strangles caused by S. equi seroconverted to SeMac, indicating that SeMac is produced in vivo during infection. SeMac has endopeptidase activity against human IgG. However, the protein just cleaves a small fraction, which may be IgG1 only, of horse IgG. Replacement of Cys102 with Ser or His272 with Ala abolishes the enzymatic activity of SeMac, and the Asp294Ala mutation greatly decreases the enzymatic activity. SeMac does not inhibit opsonophagocytosis of S. equi by horse PMNs but opsonophagocytosis of GAS by human PMNs. Thus, SeMac is a cysteine endopeptidase with a limited activity against horse IgG and must have other function.

Keywords: IgG, Endopeptidase SeMac, opsonophagocytosis, polymorphonuclear leukocytes.