Effects of Osmotic Stress on Rhamnolipid Synthesis and Time-Course Production of Cell-To-Cell Signal Molecules by Pseudomonas aeruginosa

Alexis Bazire1, Farès Diab2, Laure Taupin1, Sophie Rodrigues1, Mohamed Jebbar2, #, Alain Dufour1, *
1 Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, BP 92116, 56321 Lorient, France
2 Département Osmorégulation chez les Bactéries, UMR-CNRS 6026, Université de Rennes I, UEB, Campus de Beaulieu, 35042 Rennes, France

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 5852
Abstract HTML Views: 2993
PDF Downloads: 919
Total Views/Downloads: 9764
Unique Statistics:

Full-Text HTML Views: 2184
Abstract HTML Views: 1696
PDF Downloads: 638
Total Views/Downloads: 4518

Creative Commons License
© Bazire et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the LBCM, Université de Bretagne Sud, BP 92116, 56321 Lorient cédex, France; Tel: +33 2 97 87 45 93; Fax: +33 2 97 87 45 00; E-mail:
# Present address: Laboratoire de Microbiologie des Environnements Extrêmes, UMRCNRS 6197, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UEB, Technopôle Brest-Iroise, 29280 Plouzané, France


Biosynthesis of biosurfactant rhamnolipids by Pseudomonas aeruginosa depends on two hierarchical quorum sensing systems, LasRI and RhlRI, which synthesize and sense the signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL), respectively. The Pseudomonas Quinolone Signal (PQS) is a third cell-to-cell signal molecule connecting these two systems, and its precursor, 2-heptyl-4-quinolone (HHQ), also constitutes a signal. The chronology of the production of signal molecules and rhamnolipids was determined during growth in PPGAS medium. Hyperosmotic condition (0.5 M NaCl) moderately affected growth, and led to intra-cellular accumulation of compatible solutes. Production of signal molecules was delayed and their highest concentrations were 2.5 to 5 fold lower than in NaCl-free PPGAS, except for HHQ, the highest concentration of which was increased. The presence of NaCl prevented rhamnolipid synthesis. When the osmoprotectant glycine betaine was added to PPGAS/NaCl medium, it was imported by the cells without being metabolized. This did not improve growth, but reestablished the time-courses of HSL and HHQ accumulation and fully or partially restored the HSL and PQS levels. It also partially restored rhamnolipid production. Quantification of mRNAs encoding enzymes involved in HSL, PQS, and rhamnolipid biosyntheses confirmed the effect of hyperosmotic stress and glycine betaine at the gene expression level.

Keywords: Quorum sensing, Homoserine lactone, Pseudomonas Quinolone Signal, Rhamnolipid, Pseudomonas aeruginosa, Osmotic stress.