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Abstract: Long-term survival of human immunodeficiency virus type 1 (HIV-1) infection has been noted in rare cohorts 

of individuals infected with nef-deleted virus. Enhanced macrophage tropism and cytopathicity contribute to pathogenicity 

of wild type HIV-1. To better understand the pathogenesis of nef-deleted HIV-1, we analyzed the replication capacity and 

macrophage cytopathicity of nef-deleted HIV-1 isolated sequentially from a long-term survivor during progression to 

AIDS (n=6 isolates). Compared with controls, all nef-deleted viruses replicated to low levels in peripheral blood mononu-

clear cells and monocyte-derived macrophages (MDM). One nef-deleted virus that was isolated on the development of 

AIDS caused high levels of syncytia in MDM similar to control viruses, but five viruses isolated from earlier times prior 

to AIDS onset caused only minimal cytopathicity. Together, these results suggest that enhanced cytopathicity of nef-

deleted HIV-1 for MDM can occur independently of replication capacity, and may contribute to the pathogenesis of nef-

deleted HIV-1 infection. 

INTRODUCTION 

 Infection with human immunodeficiency virus type 1 
(HIV-1) causes depletion of CD4+ T-cells, and without 
highly active antiretroviral therapy (HAART) results in ac-
quired immunodeficiency syndrome (AIDS). Left untreated, 
HIV-1 results in progression to AIDS in the majority of in-
fected subjects, but a small proportion may progress at a 
significantly slower rate, or may be able to completely con-
trol HIV-1 infection and lack any evidence of HIV-1 pro-
gression (reviewed in [1]). These subjects are referred to as 
slow progressors (SP) or long-term nonprogressors (LTNP), 
respectively. Collectively, SP and LTNP are grouped as 
long-term survivors (LTS) of HIV-1 infection. 

 Numerous viral and host factors have been shown to af-
fect the rate of HIV-1 disease progression (reviewed in [1-
3]). Viral genetic factors shown to affect HIV-1 progression 
include mutations in the HIV-1 nef, gag, rev, vif, vpr, vpu 
and env genes. Host genetic factors linked to a delay in the 
onset of AIDS and prolonged survival include the CCR5 32 
mutation, CCR2-V64I polymorphism, and certain HLA 
haplotypes. The nef gene is a major determinant of virulence 
in primate lentiviruses. Mutations in nef attenuate replication 
capacity and pathogenicity of simian immunodeficiency vi-
rus [4-9], and long-term survival of HIV-1 infection has been 
noted in rare cases of infection with nef-defective HIV-1 [10-
15]. 

 The largest described cohort of LTS infected with nef-
defective HIV-1 is the Sydney blood bank cohort (SBBC),  
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which consists of eight individuals who became infected 
with HIV-1 via contaminated blood products obtained from a 
common donor between 1981 and 1984 [16, 17]. Viral at-
tenuation has been attributed to common deletions in the nef 
and long-terminal repeat regions of the HIV-1 genome [18, 
10]. Thus, the SBBC provides an unprecedented opportunity 
to study the pathogenicity of nef-deleted HIV-1 variants in a 
naturally occurring, human setting. 

 HIV-1 enters cells via the sequential interaction of the 
Envelope glycoproteins (Env) with the primary CD4 recep-
tor, and then a coreceptor, either CCR5 or CXCR4 (reviewed 
in [19]). CCR5 dependent (R5) viruses predominate at ear-
lier, asymptomatic stages of HIV-1 infection whereas viruses 
that have acquired the ability to use CXCR4 instead of- or in 
addition to CCR5 for cellular entry (referred to as X4 or 
R5X4 viruses, respectively) emerge at later stages of infec-
tion in a significant proportion of individuals (reviewed in 
[20]). However, most individuals progress to AIDS whilst 
harbouring only R5 HIV-1 variants (reviewed in [21]). The 
tropism of HIV-1 is largely determined by coreceptor prefer-
ence; entry of HIV-1 into macrophage lineage cells is usu-
ally mediated by CCR5, although certain X4 and R5X4 
strains can enter macrophages efficiently via CXCR4 [21]. 
However, not all R5 HIV-1 isolates are macrophage tropic 
(M-tropic). In fact, acquisition of M-tropism by HIV-1 dur-
ing the course of HIV-1 infection contributes to disease pro-
gression, irrespective of the coreceptor specificity of the 
HIV-1 strain [22, 21, 23-25]. Macrophages are also a signifi-
cant viral reservoir in vivo [26, 27], and are a significant 
source of sustained high level viremia at late stages of infec-
tion when virtually all CD4+ T-cells are depleted [28, 29]. 
Furthermore, the cytopathic effects of HIV-1 infected 
macrophages are visible microscopically in certain tissues as 
multinucleated giant cells, and correlate with organ-specific 
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HIV-1 disease; the best characterized of these being HIV-1 
encephalitis [30]. Thus, the ability of HIV-1 to replicate and 
cause cytopathic effects in macrophages contributes signifi-
cantly to the pathogenesis of HIV-1 infection. 

 Whether enhanced M-tropism and enhanced macrophage 
cytopathicity are properties of nef-deleted HIV-1 strains iso-
lated from subjects who experienced slowly progressive in-
fection is unknown. To better understand M-tropism and 
macrophage cytopathicity of nef-deleted viruses, and to de-
termine whether these properties are linked to pathogenicity 
of nef-deleted HIV-1, we characterized 6 sequentially iso-
lated nef-deleted HIV-1 variants from the SBBC “donor”, 
subject D36, during progression to AIDS. We found that all 
6 nef-deleted viruses replicated to low levels in peripheral 
blood mononuclear cells (PBMC) and monocyte-derived 
macrophages (MDM), with equivalent efficiency. However, 
only one nef-deleted virus, which was isolated during AIDS, 
caused high levels of syncytia in MDM that was similar to 
highly cytopathic control viruses. Five nef-deleted viruses 
isolated from earlier times prior to the development of AIDS 
caused only minimal cytopathicity. Thus, enhanced cyto-
pathicity of nef-deleted HIV-1 for MDM can occur without 
enhancement of M-tropism, and may contribute to the 
pathogenesis of nef-deleted HIV-1 infection in D36. 

MATERIALS AND METHODOLOGY 

 Virus Isolates: Primary viruses D36 II, D36 V, D36 
VIII, D36 IX, D36 X and D36 XI have been described in 
detail previously [31], and were isolated from blood of sub-
ject D36 by coculture with CD8-depleted PBMC according 
to published methods [22, 32]. Characteristics of the HIV-1 
isolates are summarized in Table 1. The dates when blood 
was drawn for HIV-1 isolation were May 1995, July 1996, 
May 1997, December 1997, July 1998 and January 1999, 
respectively. Blood was taken in accordance with guidelines 
endorsed by the Australian Red Cross Blood Service human 
ethics committee. Analysis of the nef and long terminal re-
peat sequence demonstrated gross deletion mutations in both 
regions, which are characteristic of SBBC HIV-1 isolates 
[31, 18, 10]. Analysis of coreceptor usage showed that all the 
primary isolates from D36 used here were R5X4 [31]. Stocks 
of the R5 HIV-1 ADA virus [33] were prepared from super-
natants of infected PBMC as described previously [22]. 
Stocks of the X4 HIV-1 NL4-3 and R5X4 HIV-1 89.6 vi-
ruses [34, 35] were produced by transfection of 293T cells 

with proviral plasmid DNA by the calcium phosphate 
method [36]. 

 Cells: PBMC were purified from blood of healthy HIV-
1-negative donors, stimulated with 5 μg of phytohemaggluti-
nin (PHA) (Sigma, St. Louis, MO) per ml for 3 days, and 
cultured in RPMI 1640 medium supplemented with 10% 
(vol/vol) fetal calf serum (FCS), 100 μg of penicillin and 
streptomycin per ml, and 20 U of interleukin-2 (IL-2) 
(Roche, Basel, Switzerland) per ml. MDM were purified 
from PBMC by plastic adherence and cultured for 5 days in 
RPMI 1640 medium supplemented with 10% (vol/vol) hu-
man AB+ serum, 100 μg of penicillin and streptomycin per 
ml, and 12.5 ng of macrophage colony-stimulating factor 
(M-CSF) per ml. 

 HIV-1 Replication Kinetics: Five hundred thousand 
PHA-activated PBMC were infected in 48-well tissue culture 
plates by incubation with 1 x 10

6
 

33
P cpm HIV-1 reverse 

transcriptase (RT) units of virus supernatant in a volume of 
250 μl for 3 h at 37°C, as described previously [31, 23]. Vi-
rus was then removed, and PBMC were washed 3 times with 
phosphate-buffered saline (PBS) and cultured in medium 
containing 20 U of IL-2 per ml for 28 days. Fifty percent 
medium changes were performed twice weekly, and super-
natants were tested for HIV-1 replication by RT assays, as 
described previously [36]. MDM were isolated from PBMC 
by plastic adherence and allowed to mature for 5 days prior 
to infection, as described previously [22]. At approximately 
90% confluence in 48-well tissue culture plates, virus 
equivalent to 1 x 10

6
 
33

P cpm RT units in a volume of 250 μl 
was allowed to adsorb to the cell monolayers for 3 h at 37°C. 
Virus was then removed, and cells were rinsed 3 times with 
PBS prior to addition of 500 μl of culture medium. Fifty 
percent medium changes were performed twice weekly for 
28 days, and supernatants were tested for HIV-1 replication 
by RT assays. 

 Analysis of Syncytium Formation in MDM: Cultures 
of HIV-1-infected MDM were analyzed for syncytium for-
mation at days 7, 11, 14, and 18 post-infection using an 
Eclipse TE 300 inverted microscope (Nikon, Osaka, Japan). 
Syncytia were counted by visual inspection and scored as +/- 
(occasional), + (low), ++ (moderate), or +++ (extensive), as 
described previously [37]. Photographs were taken at a final 
magnification of x400. 

 

Table 1. HIV-1 Isolates, Coreceptor Usage, Clinical History of the Study Subject and Corresponding Laboratory Studies 

 

HIV-1 Isolate 
Date of Blood  

Sample 

CD4+ T-Cell  

Count (Cells/ l) 

Plasma Viral Load 

(RNA Copies/ml) 

Coreceptor Usage of 

HIV-1 Isolate* 
Clinical History* 

D36 II 5/1995 NT 1400 R5X4 

D36 V 7/1996 414 2600 R5X4 

D36 VIII 5/1997 540 4000 R5X4 

D36 IX 12/1997 390 7500 R5X4 

D36 X 7/1998 325 NT R5X4 

D36 XI 1/1999 160 9900 R5X4 

Diagnosed with HIVD  
12/1998 

 

ABC, AZT, NVP 
(1/1999-9/2004) 

 

ABC, NVP, 3TC 
(9/2004-present)  

CD4+ T-cells were measured by flow cytometry. Plasma HIV-1 RNA was measured by COBAS Amplicor HIV-1 Monitor Version 1.0 (Roche Molecular Diagnostic Systems, 

Branchburg, N.J.). NT, not tested; HIVD, HIV-associated dementia; ABC, abavavir; AZT, zidovudine; NVP, nevirapine; 3TC, lamivudine. *These results have been reported previ-
ously [31, 18]. 
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RESULTS 

 Primary Isolates, and Clinical Characteristics of the 

Study Subject: Subject D36 is the SBBC common donor, 
and has been described in detail previously [31, 17]. Briefly, 
D36 was infected with HIV-1 sexually in December, 1980. 
For 14 years without antiretroviral therapy D36 had a stable 
CD4+ T-cell count, but after April 1994 the subject experi-
enced CD4+ T-cell loss until a diagnosis of HIV-associated 
dementia (HIVD) was made in December 1998. HIVD was 
the subjects first and only AIDS defining illness, and coin-
cided with the CD4+ T-cell count falling below 200 cells/ l 
and plasma viral load steadily increasing to approximately 
20,000 RNA copies/ml. At HIVD diagnosis, CSF viral load 
was measured at >750,000 RNA copies/ml. Following com-
mencement of HAART in January 1999 [31, 38] both plasma 
and CSF HIV-1 RNA were suppressed to below detectable 
levels. D36 subsequently experienced neurological im-
provement and CD4+ T-cell recovery to approximately 700 
cells/ l in August 2006. D36 remains clinically well. Thus, 
although infected with an attenuated, nef-deleted strain of 
HIV-1, D36 can be classified as a SP. 

 We previously characterized HIV-1 viruses isolated se-
quentially from D36 over a three year period leading up to 
HIVD, which follow the CD4+ T-cell loss in this subject. 
The known phenotypic characteristics of these isolates, labo-
ratory studies corresponding to the times when the blood 
samples were taken for HIV-1 isolation, and clinical charac-
teristics of the study subject are summarized in Table 1. All 
isolates were of R5X4 phenotype, similar to HIV-1 89.6. In 
contrast, HIV-1 ADA and HIV-1 NL4-3 were restricted to 
use of CCR5 or CXCR4 for entry, respectively (data not 
shown). Thus, the D36 viruses studied here maintained an 
R5X4 phenotype over the three year interval. 

 Replication in PBMC: We first examined the capacity 
of the primary, nef-deleted HIV-1 viruses isolated from D36 
to replicate in PBMC compared to control viruses with intact 
nef genes (Fig. 1). The R5X4 89.6 and X4 NL4-3 viruses 
replicated rapidly to high levels, although 89.6 replicated to 
higher levels than NL4-3 and with more rapid replication 
kinetics, peaking at day 4 post-infection. There was no varia-
tion between the replication kinetics and levels of peak virus 
replication attained by the D36 primary isolates. The D36 
viruses reached peak levels of virus replication at 4 to 7 days 
post-infection. However, peak levels of replication attained 
by the D36 viruses were approximately 6-fold and 3-fold 
lower than those achieved by 89.6 and NL4-3, respectively. 
Thus, compared to control viruses the nef-deleted D36 vi-
ruses have attenuated but similar replication capacity in 
PBMC. 

 Replication in MDM: Although all the D36 isolates are 
phenotypically R5X4 (Table 1 and [31]), we recently 
showed that certain R5X4 viruses isolated from blood of a 
subject with HIVD were highly M-tropic, and that efficient 
macrophage entry by these viruses occurred via CXCR4 
[22]. These studies raised the possibility that enhanced tro-
pism of R5X4 viruses for macrophages may contribute to 
neurovirulence. It is presently unknown whether nef-deleted 
R5X4 viruses harbored by D36 are M-tropic, or whether 
enhancement of M-tropism by these viruses contributed to 
disease progression in this subject. Thus, we next examined 
the capacity of the sequential D36 viruses to replicate in 

MDM compared to two well characterized M-tropic control 
viruses, 89.6 and ADA (Fig. 2). 

 

Fig. (1). Replication kinetics in PBMC. PBMC were infected with 

equivalent amounts of each virus, as described in Materials and 

Methodology, and cultured for 28 days. Mock infected cells were 

treated with culture medium alone. Virus production in culture 

supernatants was measured by RT assays. Values shown are means 

from duplicate infections. Error bars represent standard deviations. 

Results are representative of two independent experiments using 

cells obtained from different donors, which gave similar results. 

 The R5 ADA virus replicated rapidly to high levels, at-
taining peak levels of virus replication at day 7 post-
infection. The R5X4 89.6 virus also replicated to high levels, 
but had delayed replication kinetics compared to ADA, 
reaching peak levels of virus replication at day 14 post-
infection. All the R5X4 D36 viruses were able to replicate to 
detectable levels in MDM, and had similar replication kinet-
ics to the R5X4 89.6 control virus peaking at days 14 to 18 
post-infection, but attained peak levels of virus replication 
that were approximately 3-fold lower than 89.6. Although 
there was some variation in replication capacity among the 
D36 viruses, there was no appreciable difference in replica-
tion capacity between viruses when tested across multiple 
MDM donors (data not shown). These data indicate that the 
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D36 viruses have reduced infectivity for MDM compared to 
ADA and 89.6, and that infectivity for MDM was not en-
hanced when isolates were sequentially isolated during HIV-
1 progression in D36. 

 

Fig. (2). Replication kinetics in MDM. MDM were infected with 

equivalent amounts of each virus, as described in Materials and 

Methodology, and cultured for 28 days. Mock infected cells were 

treated with culture medium alone. Virus production in culture 

supernatants was measured by RT assays. Values shown are means 

from duplicate infections. Error bars represent standard deviations. 

Results are representative of two independent experiments using 

cells obtained from different donors, which gave similar results. 

 Cythopathicity in Macrophages: Primary HIV-1 iso-
lates may have vastly differing cytopathic effects in MDM 
that do not necessarily correlate with replication capacity 
[37], suggesting that MDM cytopathicity may be dictated by 
factors other than those that permit efficient viral entry. 
However, the ability of HIV-1 to be cytopathic in MDM may 
be associated with HIV-1 pathogenesis. For example, the 
ability of neurotropic HIV-1 isolates to induce syncytia in 
MDM cultures is closely associated with the presence of 
multinucleated giant cells in brain [37], which is a neuropa-
thological hallmark of HIVD. Cultures of MDM infected 

with the sequential D36 viruses, or the R5 ADA or R5X4 
89.6 control viruses, were examined for syncytia formation 
(Fig. 3). ADA and 89.6 induced syncytia in >90% of cells by 
day 11 or 14 post-infection, respectively. D36 II, D36 V, 
D36 VIII, D36 IX and D36 X viruses, which were all iso-
lated prior to the development of AIDS, induced syncytia in 
<5% of cells throughout the 28 days of infection. In contrast, 
D36 XI, which was isolated on development of AIDS, in-
duced syncytia in >90% of cells by day 18 post-infection, 
despite replicating only to low levels in these cultures (Fig. 
2). Thus, high levels of cytopathicity were generated in 
MDM infected with D36 XI virus, similar to the highly cy-
topathic control viruses. 

DISCUSSION AND CONCLUSION 

 In this study, we characterized a panel of HIV-1 viruses 
sequentially isolated from a SP infected with nef-deleted 
virus, that tracked CD4+ T-cell loss leading to the develop-
ment of AIDS in this subject. The replication capacity of the 
sequential isolates in PBMC and MDM was not enhanced 
during progression of HIV-1 infection, but significant cyto-
pathicity in MDM was evident only in cells infected with 
virus isolated on development of AIDS. These results sug-
gest that nef-deleted HIV-1 strains may evolve during HIV-1 
progression and increase their cytopathic potential without 
necessarily replicating more efficiently in the host. This 
would explain the CD4+ T-cell loss and progression to AIDS 
in D36 despite only relatively low plasma HIV-1 RNA lev-
els. 

 Whilst the SBBC recipient members persistently harbor 
nef-deleted HIV-1 with an R5 phenotype [32], the viruses 
isolated from D36 used in this study maintained an R5X4 
phenotype over the 3 year period [31]. This suggests that 
virus harbored by D36 evolved from an R5 to R5X4 pheno-
type prior to 1995. The emergence of R5X4 HIV-1 is typi-
cally associated with rapid progression to AIDS [39-43]. 
However, D36 harbored R5X4 HIV-1 for at least 3 years 
without antiretroviral therapy and experienced only slow 
progression of HIV-1 infection [31]. Thus, nef-deleted HIV-
1 in an attenuated infection may undergo a coreceptor switch 
from R5 to R5X4 phenotype without subsequent rapid pro-
gression to AIDS. Nonetheless, it remains uncertain as to 
whether D36 would have experienced HIV-1 progression at 
all had virus harbored by this subject not undergone a core-
ceptor switch. 

 Although we demonstrate increased macrophage cyto-
pathicity by virus isolated from blood of D36 during HIVD, 
whether the circulating strain of virus contributed to neuro-
pathogenesis of HIV-1 infection in D36, which was the sub-
ject’s only AIDS defining illness, remains unclear. CSF 
HIV-1 RNA levels were considerably higher than plasma 
HIV-1 RNA levels during HIVD (>750,000 copies/ml versus 
approximately 20,000 copies/ml) [31]. A CSF-derived virus 
was never able to be successfully isolated despite repeated 
attempts, but analysis of the HIV-1 Env V3 sequence in CSF 
demonstrated an R5-like sequence [31], suggesting that HIV-
1 present in CSF of D36 was most likely an R5 virus. This 
analysis showed compartmentalized evolution of nef-deleted 
HIV-1 in D36, raising the possibility that the direct neuropa-
thogenic effects were caused by distinct pathogenic features 
of the CSF virus not present in the blood-derived isolates. 
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HIVD typically occurs late in HIV-1 infection, after the on-
set of immunodeficiency [44]. Therefore, it is plausible that 
evolution toward a more cytopathic nef-deleted virus in 
blood contributed to neuropathogenesis in D36 by lowering 
the immune threshold for the neuropathogenic manifesta-
tions of HIV-1 infection to become evident. 

 The molecular determinants underlying increased macro-
phage cytopathicity by the D36 XI isolate are unclear, but 
most likely map to the HIV-1 Env (reviewed in [21]). The 
Env glycoproteins are the principal determinants of cytotox-
icity in an infected cell [45]. Furthermore, studies in ma-
caques infected with chimeric simian-HIV (SHIV) viruses 
showed distinct changes in Env associated with enhanced 
pathogenicity in vivo, which in part resulted from increased 
Env-coreceptor binding [46]. Therefore, one possibility is 
that R5X4 Env glycoproteins in D36 isolates evolved to 
variants able to interact more efficiently with cellular recep-
tors, thus increasing their cytopathic potential. This hypothe-
sis is supported by previous studies which analyzed the abil-
ity of D36 II and D36 XI viruses to cause CD4+ T-cell cyto-
pathicity in ex vivo human lymphoid cell cultures [47]. This 
study found that D36 XI was significantly more potent in 
depleting CD4+ T-cells from these cultures than D36 II, 
which resulted from an increased ability of D36 XI to use 
CXCR4 as a coreceptor for HIV-1 entry. Thus, increased 
macrophage cytopathicity by D36 XI is most likely due to 
intrinsic pathogenic features of the Env that increase fu-
sogenicity, similar to that which has been observed by neu-
rotropic R5 and R5X4 viruses [37, 48, 49]. This idea is con-

sistent with previous studies that linked increased Env-
mediated fusion to pathogenicity of nef-deleted SIV [50]. 
Further studies are required to elucidate the molecular de-
terminants of D36 Env that are associated with increased 
fusogenicity. 

 In summary, we demonstrate increased macrophage cy-
topathicity by nef-deleted R5X4 HIV-1 isolated from blood 
of a SP during progressive HIV-1 infection. To our knowl-
edge, this is the first report to demonstrate enhanced macro-
phage cytopathicity by a nef-deleted HIV-1 variant associ-
ated with AIDS. The molecular determinants underlying 
increased macrophage cytopathicity by this HIV-1 variant 
remain unclear, but involve mechanism(s) distinct from 
those that govern replication capacity per se. Increased 
macrophage cytopathicity is likely to involve changes in the 
Env glycoproteins, which also contribute to CD4+ T-cell 
loss in D36. 
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Fig. (3). Syncytium formation in MDM induced by nef-deleted viruses. MDM were infected with equivalent amounts of each virus, as 

described in Materials and Methodology. Mock-infected MDM were treated with culture medium alone. Syncytia formation was documented 

at day 11 (ADA), 14 (89.6) or 18 (D36 viruses) post-infection. Syncytia were counted manually and scored as +/-, occasional syncytia; +, 

low frequency of syncytia, occurring in <5% of cells; ++, moderate frequency of syncytia, occurring in 5 to 50% of cells; or +++, extensive 

syncytia, occurring in >50% of cells, as described previously [37]. Results are representative of two independent experiments using cells 

obtained from different donors, which gave similar results. Photographs are at a final magnification of x400. 
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