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Abstract: The aim of this study was to determine the effect of exogenous farnesol in yeast-to-hyphae morphogenesis, and 

Saps (2, 4, 5 and 6) mRNA expressions by a Candida strain that does not produce endogenous farnesol. C. albicans was 

cultured in the absence and presence of farnesol at various concentrations (10, 100, and 300 μM), in proteinase induction 

medium, and then used to determine yeast-to- hyphae changes, Candida ultrastructure and to determine Saps 2, 4, 5 and 6 

expressions using q-TR-PCR and ELISA (for Sap2). Data demonstrated that farnesol greatly reduced the yeast-to-hyphae 

morphogenesis of a Candida strain that does not produce endogenous farnesol. Farnesol induced several ultrastructural al-

terations, including changes in the cell-wall shape, a visible disconnection between the cell wall and cytoplasm with an 

electron-lucent zone between them, and the presence of electron-dense vacuoles. Tested on gene expressions, farnesol was 

able to significantly (p < 0.01) decrease Sap2 secretion and mRNA expression. Farnesol downregulated also Sap4-6 

mRNA expression. These results demonstrated for the first time that farnesol modules Candida morphogenesis through a 

downregulation of Saps 2, 4, 5 and 6 expressions. Overall these data point to the potential use of farnesol as an antifungal 

molecule.  
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INTRODUCTION 

 Candida is a fungus, which accounts for nearly 96% of 
all opportunistic mycoses and is the fourth most common 
bloodstream pathogen in North American and seventh in 
European hospitals [1, 2]. Worldwide, candidiasis is associ-
ated with overall severity of illness, increased rate of inva-
sive interventions, use of broad spectrum antibiotics and 
parenteral nutrition, which are all unavoidable among criti-
cally ill patients [3, 4]. Candida infections lead to a pro-
longed stays in intensive care unit and hospital which causes 
significant health and economic problems [5, 6]. Among the 
Candida genus, Candida albicans is a fungal organism that 
forms part of the normal oral microbial flora in approxi-
mately 50% of healthy individuals [7]. C. albicans is a po-
lymorphic organism and can grow as yeast, pseudohyphae or 
hyphae; each differing in its morphology and virulence [8]. 
The yeast form is commonly associated with the commensal  
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carrier state, thanks to the innate immune function. The  
disruption of the immune surveillance leads to C. albicans 
growth and morphological changes to its hyphal form facili-
tating tissue invasion and pathogenesis [9, 10]. C. albicans 
proceeds in different ways to invade and infect its host. 
These include its ability to overcome the host immune re-
sponse [11], the phenotypic transition from blastospore to 
hyphal form [12], the use of hyphae-associated factors [13], 
invasion-like molecules [14], and secreted aspartyl protein-
ases (Saps) [15].  

 Saps constitute a family of 10 proteolytic enzymes 
known as secreted aspartyl proteinases [16]. The contribu-
tion of Saps to mucosal and systemic infections and their 
involvement in adherence, tissue damage, and evasion of 
host immune responses has been reported [17]. Sap2 is es-
sential to C. albicans growth in protein-containing media 
[17]. Sap1 and Sap3 are expressed during phenotypic switch-
ing [18, 19], while Sap4, Sap5 and Sap6 are expressed upon 
hyphal formation [20]. Sap1 to Sap6 as well as Sap9 and 
Sap10 are involved in the adhesion mechanism to host cells 
[21]. Although these 10 Sap proteins are produced during 
infection, their induction time points and expression levels 
occur at different stages. When in contact with host tissue 
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and cells, C. albicans is capable of growing as yeast, pseu-
dohyphae, and hyphae. Candida density is one of several 
factors that influence hyphal growth [22]. Some studies have 
revealed that the population dependence of C. albicans mor-
phology results from the continuous production and detec-
tion of sesquiterpene farnesol (3, 7, 11-trimethyl-2, 6, 10-
dodecatriene-1-ol) [23].  

 Farnesol is a metabolic product of mevalonate/sterol syn-
thesis in eukaryotes [24]. Farnesol generally functions 
endogenously; however, in C. albicans, this molecule acts in 
an autocrine manner. Research has shown that farnesol pro-
duced in situ by planktonic C. albicans cultures prevented 
biofilm formation [25]. The accumulation of farnesol blocks 
the morphological shift from yeast to hyphae form at high 
cell densities [26-29]. These data suggest that farnesol may 
reduce Candida pathogenesis through a downregulation of 
yeast-to hypha morphogenesis that could involve a modula-
tion of Saps gene expression. The purpose of this study was 
to investigate the effect of exogenous farnesol on yeast-to-
hypha morphogenesis, Candida ultrastructural shape and 
Saps gene expression.  

MATERIALS AND METHODS 

Farnesol Solution  

 The trans, trans-farnesol was purchased from Sigma-
Aldrich Canada Ltd. (Oakville, ON, Canada). Farnesol (1 M) 
stock was prepared fresh in methanol prior to each experi-
ment. The original flask containing farnesol was de-gassed 
with nitrogen gas after each use to prevent farnesol degrada-
tion by oxygen. In this study, farnesol was used at 10, 100 
and 300 μM, These concentrations were comparable to those 
previously used in different studies [26].  

Candida Strain 

 We selected C. albicans (ATCC 10231) which is known 
to be a nonproducer of endogenous farnesol [30]. This al-
lows us to have specific effect, if any, related to exogenous 
farnesol. C. albicans was cultured for 24 h on Sabouraud 
dextrose agar plates (Becton Dickinson, Oakville, ON, Can-
ada) at 30°C. For the C. albicans suspensions, one colony 
was used to inoculate 10 ml of Sabouraud liquid medium 
supplemented with 0.1% glucose, pH 5.6. The cultures were 
grown to the stationary phase in a shaking water bath for 
18 h at 30°C. The yeast cells were then collected, washed 
with phosphate buffered saline (PBS), counted by means of a 
haemocytometer and adjusted to 10

7
/ml prior to use. 

Effect of Farnesol on C. Albicans Transition 

 To determine the effect of farnesol on the yeast-to-
hyphae transition, C. albicans (10

4
 cells) was grown in 10 ml 

of proteinase induction medium (PIM: 2% glucose, 0.1% 
KH2PO4, 0.05% MgSO4; adjusted to pH 4.0) supplemented 
with 10% (v⁄v) bovine serum albumin (BSA, Sigma) as pre-
viously reported [31] for 24 h at 37°C. Farnesol was added 
with and without fetal bovine serum (FBS) at various con-
centrations (10, 100, and 300 μM). The cultures were incu-
bated at 37°C, observed microscopically at 6 and 24 h, and 
photographed to record C. albicans morphology. To calcu-
late the percentage of yeast cells that underwent the morpho-
logical transition, three aliquots from each culture (n = 5) 

were used to determine the number of yeast cells and hyphae 
by means of a haemocytometer and an optical microscope, as 
previously described [32]. The percentage of cells that un-
derwent morphological transition was determined using the 
following formula: (number of hyphae divided by the num-
ber of yeast cells and hyphae)  100. 

Effect of Farnesol on C. Albicans Ultrastructure 

 C. albicans (10
6
 cells) was cultured in Sabouraud liquid 

medium in the presence of farnesol at 10, 100, and 300 μM. 
C. albicans cultured in the presence of 0.1% methanol and in 
the presence of 5 μg/ml of amphotericin-B (Amph-B) consti-
tuted the negative and positive controls, respectively. Fol-
lowing a 24-h culture, pellets of C. albicans were prepared 
and used for scanning and transmission electron microscopy 
analyses. 

Scanning Electron Microscopy 

 C. albicans cells were fixed in 3% (v/v) gluteraldehyde 
in PBS (pH 7.4)

 
and dehydrated in increasing concentrations 

of ethanol (10%,
 
v/v, increments to 100%). A drop was 

placed onto a round glass
 
cover slip for critical-point drying 

(CPD 030; Balzers, Liechtenstein, Germany). The
 
sample 

was mounted onto an aluminium slab using silver paint 
(Agar Scientific, Stansted, UK). Sputter coating was per-
formed (S150B, Edwards, London, UK)

 
and the image was 

viewed using the scanning electron microscope model  
Jeol JSM 6360 LV (Soquelec, Montréal, QC, Canada). The 
experiment was repeated three times. 

Transmission Electron Microscopy 

 C. albicans was fixed in cacodylate buffer, pH 6.9, con-
taining

 
1% (v/v) paraformaldehyde and 2% (v/v) gluteralde-

hyde, for 1 h at
 
4°C. The suspensions were then centrifuged 

and dehydrated
 
in successive washes of ethanol for 30 min. 

The C. albicans pellets were embedded in Spurr resin and 
ultra-thin sections were

 
obtained (Ultratome III, LKB, 

Bromma, Sweden). These sections were then mounted onto a 
0.5% Pioloform (in chloroform)-coated 3.05 mm

 
copper grid 

and stained with 3% aqueous uranyl acetate and 0.1% lead 
citrate prior to imaging under a JEOL 1200 transmission 
electron microscope (Soquelec, Montréal, QC, Canada). The 
experiment was repeated four times. 

RT-PCR Analyses to Assess the Effect of Farnesol on C. 

Albicans Gene Expression  

Total RNA Extraction  

 C. albicans (10
5
 cells) was cultured in the absence and 

presence of farnesol at various concentrations (10, 100, and 
300 μM) in PIM supplemented with 10% (v⁄v) bovine serum 
albumin for 24 h at 37°C. Cultures containing 2 x 10

7
 Can-

dida were then centrifuged at 110 g for 10 min, pellets were 
washed and suspended in 400 l of TES (10 mM Tris-Cl, pH 
7.5; 10 mM EDTA and 0.5% SDS) and 400 l of phenol acid 
[33]. The suspension was vortexed for 10 s and incubated for 
45 min at 65°C in a water bath. The suspension was then 
centrifuged using a microcentrifuge for 5 min at top speed at 
4°C, after which time the aqueous phase was collected and 
400 l of phenol acid were added. The mixture was incu-
bated for 5 min at 4°C and then centrifuged in a microcentri-
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fuge for 5 min at top speed. The aqueous phase was col-
lected, supplemented with 400 μl of chloroform, and incu-
bated for 5 min. Following top-speed centrifugation for 
5 min at 4°C, the aqueous phase was collected and total 
RNA was precipitated using ethanol plus 3.5 M sodium ace-
tate, pH 5.3. Each RNA pellet was re-suspended in 1 ml of 
ethanol and centrifuged. The pellets were then re-suspended 
in a low volume of RNAse-free water. RNA concentration 
was determined by fluorescence using Ribogreen (Molecular 
Probes Inc., Eugene, OR, USA). 

Quantitative Real-Time PCR (qRT-PCR) 

 RNA (1 g of each sample) was reverse transcripted into 
cDNA using Maloney murine leukemia virus (M-MLV) re-
verse transcriptase (Invitrogen Life Technologies, Missis-
sauga, ON, Canada) and random hexamers (Amersham 
Pharmacia Biotech, Inc., Baie d’Urfé, QC, Canada). RT  
conditions were 10 min at 65°C, 1 h at 37°C, and 10 min  
at 65°C. Quantitative PCR was carried out as described  
[33, 34]. Amounts of mRNA transcripts were measured  
using the Bio-Rad CFX96 real-time PCR detection system 
(Bio-Rad, Mississauga, ON, Canada). 

 Reactions were performed using a PCR supermix from 
Bio-Rad (iQ SYBR Green supermix). Primers Table 1 were 
added to the reaction mix at a final concentration of 250 nM. 
Five microliters of each cDNA sample were added to a 20 l 
PCR mixture containing 12.5 l of iQ SYBR Green super-
mix (Bio-Rad) and 0.5 l of specific primers (Sap2, Sap4, 
Sap5, Sap6, and ACT-1) (Medicorp, Inc., Montréal, QC, 
Canada) and 7 l of Rnase- and Dnase-free water (MP Bio-
medicals, Solon, OH, USA). Each reaction was performed in 
a Bio-Rad MyCycler

TM
 Thermal Cycler (Bio-Rad). For the 

qPCR, the CT was automatically determined using the ac-
companying Bio-Rad CFX manager. Thermocycling condi-
tions for the Sap quantitation were 15 min at 95°C, followed 
by 45 cycles for 15 sec at 94°C and 1 min at 60°C, then 30 s 
at 72°C, with each reaction done in triplicate. The specificity 
of each primer pair was verified by the presence of a single 
melting temperature peak. ACT-1 produced uniform expres-
sion levels varying by less than 0.5 CTs between sample 
conditions and was therefore used as a reference gene for 
this study.  

Induction of Sap Protein Production 

 To determine farnesol’s effect on C. albicans Sap pro-

duction, 100 ml of a 10
7
 yeast cell suspension were grown in 

the presence or absence of farnesol in proteinase induction 

medium PIM supplemented with 10% bovine serum albu-

min. Candida cultures in the absence of farnesol and pres-
ence of pepstatine-A at 50 μg/ml were used as negative (no 

Sap activity) controls. Candida cultures without farnesol and 

with PIM that contains or not methanol served as positive 
controls, whereas the cultures without farnesol and BSA 

were used as internal negative controls (no Sap production). 

Each concentration was simultaneously tested in triplicate 
(in separate tubes). These were incubated for 8 days at 37°C 

under agitation. Farnesol concentrations were refreshed 

every 24 h. This relatively long experimental duration time 
has previously been shown to be required for sufficient Sap 

production [31]. On the last day of culture, the supernatants 

were collected, centrifuged at 1200 g for 10 min, and used to 
determine Sap2 concentration in each sample by ELISA.  

Detection of Sap2 Protein in the Candida Supernatants: 

Competitive Binding Inhibition ELISA  

 Anti-Sap2 IgG antibody was obtained by immunizing 
male Balbc/c mice with recombinant Saps2 protein [35]. 

Sera of immunized and sham-immunized mice were col-
lected after 21 days and used to purify anti-Sap2 IgG anti-
body. Following purification, the reactivity of the anti-Sap2 
IgG antibody was determined by ELISA using recombinant 

Sap proteins rSap1, rSap2, rSap3, rSap5, rSap6 (a kind gift 
from Dr. Bernard Hube, Hans Knoell Institute, Jena, Ger-
many) and native Sap2 (Brenntag, Denmark). This showed 
that our anti-Sap2 IgG reacted with both the recombinant 

and native Sap2 and, to a lesser extent, Sap1 and Sap3. Anti-
Sap2 IgG did not react with other Saps. Anti-Sap2 IgG anti-
body was thus used to measure the Sap2 production by C. 
albicans following treatment with farnesol. Polystyrene mi-

crotitre plates (Nunc) were coated with 50 μl of 5 μg/ml 
rSap2 in 0.06 M sodium carbonate buffer (pH 9.6) and incu-
bated at 4°C. The wells were then saturated for 2 h at room 
temperature with 2% BSA in Tris-Buffered Saline and 

Tween 20 (TBST). The plates were washed three times with 
TBST, after which time 100 μl of each incubation mixture 

Table 1. Description of Oligoncleotide Primer Pairs Used in PCR Reactions 

Gene Primer Sequence (5’ to 3’) Amp Size (bp) 

ACT-1 Sens-GACAATTTCTCTTTCAGCACTAGTAGTGA 

Antisens-GCTGGTAGAGACTTGACCAACCA 

87 

SAP2 Sens-TCCTGATGTTAATGTTGATTGTCAAG 

Antisens-TGGATCATATGTCCCCTTTTGTT 

81 

SAP4 Sens-AGATATTGAGCCCACAGAAATTCC 

Antisens-CAATTTAACTGCAACAGGTCCTCTT 

81 

SAP5 Sens-CATTGTGCAAAGTAACTGCAACAG 

Antisens-CAGAATTTCCCGTCGATGAGA 

77 

SAP6 Sens-CCTTTATGAGCACTAGTAGACCAAACG 

Antisens-TTACGCAAAAGGTAACTTGTATCAAGA 

101 
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(prepared as follows) were plated in duplicate and incubated 

for 1 h at 37°C. The incubation mixtures, prepared in TBST 
2% BSA, consisted of serial dilutions of rSap2, starting at 
500 μg/ml (to obtain a Sap2 standard curve), or samples to 
be titrated, which were incubated in polystyrene tubes for 1 h 

at room temperature with an equal volume of anti-Sap2 IgG 
(diluted 1:75 in TBST 2% BSA). After washing, the bound 
antibodies were detected by adding alkaline phosphatase-
coupled monoclonal goat anti-mouse IgG (Southern  

Biotechnology Associates) for 30 min at room temperature. 
Substrate solution containing p-nitrophenyl phosphate (Sigma) 
was then added after washing and the reaction was stopped 
with the addition of 0.1 M EDTA pH 8.0. Absorbance at 

405 nm was inversely proportional to the amount of Sap  
present, and inhibition results were converted into μg/ml of 
Sap by means of the obtained standard curve, which was 
linear over the concentration range used.  

Statistical Analyses 

 Each experiment in this study was performed three times 
or more. Experimental values are given as means + SD. The 
statistical significance of differences between the control 
values and the test values was evaluated using a one-way 
ANOVA. Posteriori comparisons were done using Tukey’s 
method. Normality and variance assumptions were verified 
using the Shapiro-Wilk test and the Brown and Forsythe test, 
respectively. All of the assumptions were fulfilled. Data 
were analyzed using the SAS version 8.2 statistical package 
(SAS Institute Inc., Cary, NC, USA). Results were consid-
ered significant at p < 0.05. 

RESULTS 

Inhibition of Germ Tube Formation by Farnesol 

 As shown in Fig. (1), germ tube formation was reduced 
in the farnesol-treated C. albicans cells compared to that 

observed in the untreated control cultures Fig. (1A). The 

inhibition of germ tube formation was significant at both low 
and high concentrations of farnesol Fig. (1B) and as early as 

6 h after contact. The inhibitory effect of farnesol on the 

yeast-to-hyphae transition was maintained after 24 h Figs. 
(1A and 1B). Only few, if any germ tubes were observed in 

the absence of BSA, either with or without farnesol (data not 

shown). The effect of farnesol against C. albicans transition 
could be through ultrastructural changes. 

Effect of Farnesol on C. Albicans Ultrastructure Changes 

 The aerobic growth of C. albicans cells showed typical 
yeast cells displaying the characteristic bud scars

 
(Fig. (2), 

SEM, Ctrl). No development of pseudohyphae (chains of 
elongated unseparated blastospores) was observed in the 
cultures with or without farnesol or Amph-B. Following the 
addition of farnesol, the external morphology

 
of the cells did 

not appear as smooth as that of the untreated cells, which 
indicates a possible loss of cytosolic volume. Indeed, farne-
sol basically distorted the cell wall

 
surface at high concentra-

tions (Fig. (2), SEM). Nevertheless, the cell wall of C. albicans 
cultured in the presence of farnesol did not resemble to that 
of C. albicans treated with Amph-B. To confirm these re-
sults we performed transmission electron microscopy analy-
ses. Incubation of C. albicans in the presence of farnesol 

resulted in
 
notable alterations in the internal morphology, 

when compared to control cells (Fig. (2), TEM). Non-treated 
C. albicans cells displayed a normal cellular morphology 
with typical dense cytoplasm and a distinct cell wall. Fur-
thermore, untreated Candida showed continuous cytoplasmic 
membrane (cm) lining a homogeneous and electron-dense 
cytoplasm that contains visible nucleus. However, in the 
presence of farnesol, large and irregular cytoplasmic vacu-
oles were detected. Peripheral vacuoles present in the farne-
sol-treated cells were not visible in organisms from the con-
trol cultures. Treatment with farnesol also resulted in an in-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Farnesol modulated Candida transition from blasto-

spore to hyphae forms. C. albicans was cultured PIM containing 

or not BSA with and without farnesol at various concentrations (10, 

100, and 300 M) for 6 and 24 h at 37°C. After each time point, the 

cultures were observed under an inverted microscope and photo-

graphed. Panel A showed morphological changes at 6 h. The num-

bers of yeast and hyphal forms were then counted. The percentage 

of hyphae was obtained by dividing the number of hyphae by the 

total number of cells (blastospores and hyphae) in each culture. The 

means + SD relative values are shown in (B). The levels of signifi-

cance were obtained by comparing the percentages of yeast-to-

hyphae transition in the presence/absence of farnesol. (a), untreated 

C. albicans ; (b), treated with 10 mM ; (c), treated with 100 mM ; 

(d), treated with 300 mM of farnesol. 
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creased granulation of the cytoplasm, diminished
 
definition 

of the cell membrane as well as a loss of cell-wall integrity 
(Fig. (2), TEM). A similar effect was obtained when 
C. albicans was treated with Amph-B.  

Farnesol Modulated Sap2, 4, 5 and 6 mRNA Expressions 

 As shown in Fig. (3), farnesol significantly (p< 0.01) 
affected Sap2 expression, showing decreased Sap2 mRNA 
expression at all of the tested concentrations. The decrease 
varied between 4- and 6-fold, compared to non-treated 
C. albicans cultures Fig. (3A). The same observations were 
made with Saps4-6. Farnesol significantly (p< 0.05) down-
regulated mRNA expression of Saps4-6. The important ef-
fects were obtained with Sap5 and Sap6. With Sap5, the de-
crease varied between 2 and 5 folds Fig. (3C). With Sap6, 
the decrease was about 10 folds following C. albicans treat-

ment with 100 and 300 μM of farnesol Fig. (3D). With 10 
μM of farnesol no effect was observed basically for Sap4 
and Sap6. 

Farnesol Downregulated Sap2 Protein Production 

 Whenever possible, mRNA expression should be con-
firmed by using protein expression analysis. As farnesol 
clearly downregulated Sap2 expression, and taking into ac-
count that Sap2 is the predominant Sap gene produced in 
vitro under most proteinase-inducing conditions, the effect of 
this quorum-sensing molecule on Sap2 protein production 
was thus investigated. To do so, anti-Sap2 IgG antibodies 
were produced to determine, by means of competitive bind-
ing inhibition ELISA, the concentration of Sap2 produced by 
C. albicans following treatment with farnesol. As shown in 
Fig. (4), Sap2 production was significantly reduced in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Scanning electron microscopy (left column) and transmission electron microscopy (two right columns) micrographs of C. 

albicans with and without farnesol. Candida was untreated (Ctrl), treated with Ampho-B (positive control) or with farnesol at various con-

centrations for 24 h then subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. (n), nu-

cleus; (cm), continuous cytoplasmic membrane; (CW), Cell wall; (V), vacuole. Each experiment was repeated three and four times, for SEM 

and TEM, respectively. 
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presence of farnesol. This observed reduction ranged be-
tween 4- and 16-fold and was dose-dependent. These results 
are in agreement with those of the Sap2 mRNA levels fol-
lowing farnesol treatment Fig. (3).  

 

 

 

 

 

 

 

 

 

 

Fig. (4). Effect of farnesol on the secretion of Sap2 protein by C. 

albicans. Following Candida culture in the presence of various 

concentrations of farnesol for 24 h, the supernatants were collected 

and used to quantify Sap2 level by competitive binding inhibition 

ELISA. The bars represent the means + SD of Sap2 concentration 

on three separate experiments. The levels of significance were  

obtained by comparing the values of farnesol stimulated cultures 

with control cultures. 

DISCUSSION 

 Candida virulence is not limited only to growth, but is 

also mediated by its ability to change the morphotype from 

yeast to hyphae. In an experimental protocol that induce hy-

phae formation through the presence of BSA in the culture 

medium, we showed that farnesol reduced, up to 10-fold, the 

Candida transition from yeast to hyphal forms. These data 

are in accordance with previously reported studies [36] 

showing that farnesol (which acts in an autocrine manner on 

Candida) blocks the morphological shift of Candida from 

yeast to hyphae at high cell densities [37, 38]. This was con-

firmed by in vitro studies showing that exogenously-added 

farnesol inhibited germ tube formation [39-41] normally 

triggered by serum [32], proline and N-acetylglucosamine 

[24]. Studies have shown that farnesol produced in situ by 

planktonic C. albicans cultures prevented biofilm formation 

[30]. To these we should add the present study showing for 

the first time that, exogenous farnesol modulates the behav-

iour of Candida that does not produce endogenous farnesol. 

Farnesol may therefore be a key player in modulating 

C. albicans pathogenesis. However, in a recent study, Weber 

et al. (2010) state that, farnesol may be involved in the viru-

lence aspect of destroying the epithelial cell layer of the host 

as the initial invasion process [36]. Thus additional investi-

gations that include Candida, exogenous farnesol and human 
epithelial cells are needed.  

 Farnesol is an amphiphilic molecule known to solubilise 

model membranes [42, 43]. In mammalian cells, it affects 

membrane ion channels [44] and in Staphylococcus aureus, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Effect of farnesol on Sap2, 4, 5 and 6 genes expression. Following C. albicans culture in the presence of various concentrations of 

farnesol, total RNA was extracted from each cell culture and qRT-PCR was performed using specific primers for Sap2, 4, 5 and 6. ACT-1 

was used as the housekeeping gene for internal control. The changes in mRNA levels are presented as the fold expression of the gene in the 

test sample compared to this gene’s expression in the control (without farnesol). Data are expressed as means + SD from triplicate assays of 

three different experiments. 
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it inhibits biofilm formation and compromises cell mem-

brane integrity [45]. We therefore suggest that farnesol may 

modulate Candida growth by compromising the cell wall 

and/or cell membrane as well as cytoplasm integrity. 

 In this context, we performed ultrastructural analyses to 

show that farnesol distorted the cell wall
 
surface at high con-

centrations. Farnesol-treated C. albicans displayed highly 

vacuolated cells with an increased granulation of the cyto-

plasm. Similar alterations were observed upon treatment of 

C. albicans cells with Ciclopirox [46], Amph-B, and nisin Z 

[47]. However, the mechanism involved in Candida growth 

control by farnesol remains to be elucidated. This may be 

linked to Candida interacting with its environment that in-

volves pH, temperature, and most certainly, the host. Com-

promising C. albicans cell wall and morphological changes 

from blastospore to hyphae could be through Saps genes 

modulation. It is well known that Candida pathogenesis may 

be reached through Candida growth as well as through its 

yeast-to-hyphae morphohenesis. Specific Saps were found to 

be preferentially expressed by Candida hyphae forms [20, 

48]. The reduction of Sap expression by C. albicans may in 

fact reduce the yeast virulence/pathogenesis. We demon-

strated that farnesol decreased Sap2 mRNA expression and 

protein production supporting the role of Sap2 in Candida in 

fulfilling basic functions in relation to transition and patho-

genesis via proteinase [49], and the effect of farnesol on re-

ducing Candida pathogenesis through Sap2 expression. 

These data are confirmed by some other Saps modulation. 

Indeed, Sap4-6 mRNA expressions were also downregulated 

upon farnesol treatment. This highlights, for the first time, a 

clear link between farnesol, hyphae morphogenesis, and hy-

phae-modulating genes (Sap4-6). Our findings support the 

usefulness of farnesol as a potential molecule to control 

Candida pathogenesis through Sap4-6 gene inhibiting. These 

Saps were previously reported to be involved in controlling 

Candida transition and virulence [48]. The precise interac-

tions between the different Saps and farnesol during Candida 

pathogenesis remain unexplored. Further studies will focus 

on identifying the role of Sap subfamilies in Candida inva-

sion, and the role of farnesol in controlling Candida viru-
lence/pathogenesis in conjunction with host defenses. 

 In conclusion, this study demonstrates for the first time 

that exogenous farnesol used with C. albicans that does  

not endogenously produce farnesol downregulate hyphae 

morphogenesis through cell wall changes and Sap2, Saps4-6 

mRNA expression decrease. Overall results suggest the pos-
sible use of farnesol as an antifungal molecule.  
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