
92 The Open Microbiology Journal, 2009, 3, 92-96  

 

 1874-2858/09 2009 Bentham Open 

Open Access 

Comparative Antimicrobial Activity of Granulysin against Bacterial  
Biothreat Agents 

Janice J. Endsley
a,c,*, Alfredo G. Torres

a,b,c
, Christine M. Gonzales

a
, Valeri G. Kosykh

b
, Vladimir L. 

Motin
a,b,c

, Johnny W. Peterson
a,c

,
 
D. Mark Estes

a,c
 and Gary R. Klimpel

a,c
 

Department of Microbiology and Immunology
a
, Department of Pathology

b
, and Sealy Center for Vaccine Development

c
, 

University of Texas Medical Branch, Galveston, TX 77555-0436, USA 

Abstract: Granulysin is a cationic protein produced by human T cells and natural killer cells that can kill bacterial  

pathogens through disruption of microbial membrane integrity. Herein we demonstrate antimicrobial activity of the  

granulysin peptide derived from the active site against Bacillus anthracis, Yersinia pestis, Francisella tularensis, and 

Burkholderia mallei, and show pathogen-specific differences in granulysin peptide effects. The susceptibility of Y. pestis 

to granulysin is temperature dependent, being less susceptible when grown at the flea arthropod vector temperature (26°C) 

than when grown at human body temperature. These studies suggest that augmentation of granulysin expression by  

cytotoxic lymphocytes, or therapeutic application of granulysin peptides, could constitute important strategies for protec-

tion against select agent bacterial pathogens. Investigations of the microbial surface molecules that determine susceptibil-

ity to granulysin may identify important mechanisms that contribute to pathogenesis.  
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INTRODUCTION 

 Bacteria that evade the host immune response by  
surviving phagocytosis comprise some of the most serious 
microbial threats to human health. Among these are  
Mycobacterium tuberculosis (Mtb) and some of the  
pathogens classified by the Center for Disease Control and 
Prevention as bacterial select agents, Bacillus anthracis, 
Yersinia pestis, Burkholderia mallei, and Francisella  
tularensis. The tropism for phagocytic cells by these patho-
gens is an important factor for their successful evasion of the 
immune system and poses significant challenges for immu-
nization or therapeutic intervention. Characterizing protec-
tive immune responses to these pathogens, then, is para-
mount to development of prophylactic or early therapeutic 
intervention strategies. Cytotoxic T cells (Tc) and NK cells 
control intracellular pathogens through multiple killing 
mechanisms, including death receptor activation and release 
of cytolytic granule proteins. In human cytotoxic lympho-
cytes, granulysin is an important component of the lytic  
repertoire and is stored in cytotoxic granules along with  
perforin and granzymes [1-5] . Perforin and granzymes kill 
the infected cell, whereas granulysin has the unique capacity 
to kill the intracellular pathogen by disruption of microbial 
membranes [5-7]. The lytic activity due to granulysin  
has been described against several important pathogens,  
including Mtb, Plasmodium falciparum, Cryptococcus  
neoformans, Salmonella enterica serovar Typhimurium  
(S. Typhimurium), Escherichia coli 0157:H7 and Staphylo-
coccus aureus [5-10] . 
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 The ability of granulysin to kill intracellular Mtb supports 

an important role for this molecule in the cytotoxic lympho-

cyte (Tc and NK cells) response to intracellular bacterial 

pathogens that evade the immune response through residence 

in macrophages. To investigate a potential role for granu-

lysin in the immune repsonse to an expanded list of intracel-

lular bacterial pathogens for which interventions are urgently 

needed, we utilized a peptide derived from the active site of 

human granulysin and a negative control peptide. The active 

site peptide has been previously shown to reproduce the  

effects of the recombinant granulysin molecule, and is  

considered to have potential as an antibacterial therapeutic 

[5-7, 10, 11]. In this study, we demonstrate and compare  

the antibacterial activity of granulysin against B. anthracis 

(Ames), Y. pestis (CO 92), F. tularensis (SHU S4 and LVS), 

and B. mallei (ATCC 23344), using a peptide derived  

from the active site of granulysin. These studies support  

the need to further characterize the role of granulysin in  

the innate and acquired CTL response to these important 

pathogens.  

MATERIALS AND METHODS 

 Synthetic custom peptides >95% pure by HPLC  

were purchased from New England Peptide LLC (Gardner, 

MA, USA). A peptide corresponding to amino acid residues 

34-55 of human granulysin (CRTGRSRWRDVCRNFMRR- 

YQSR) was synthesized. As a negative control, a peptide 

corresponding to amino acids 2-22 (RDYRTCLTIVQKL- 

KKMVDKPT) of human granulysin was also synthesized. 

Lyophilized peptide was stored in desiccant at -20 °C prior 

to use. Peptide stocks (5 mM) were solubilized in 0.1 N  

acetic acid solution, and then further diluted in sterile PBS to  

1 mM, prior to use. Polypropylene tubes were used to store,  
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aliquot, or perform experiments with peptides to prevent loss 

of peptides due to binding to tubes. All experimentation with 

select agents was performed under level 2 or 3 biosafety 

conditions according to protocols approved by the University 

of Texas Medical Branch Environmental Health and Safety. 

S. Typhimurium, F. tularensis, B. anthracis and B. mallei 

were grown in brain heart infusion broth (BHI), Muller  

Hinton media with Isovitle X, Luria-Bertani (LB) media, and 

LB media supplemented with 4% glucose (LBG), respec-

tively. Cultures of S. Typhimurium, F. tularensis (LVS, 

SHU S4), B. anthracis (Ames strain) and B. mallei (ATCC 

23344) were grown to exponential phase and diluted in 

growth medium to approximately 10
5
 colony forming units 

(CFU)/ml. A 90 μl aliquot of diluted microorganism was 

pre-incubated with 10 μl of PBS or 10 μl of individual 

granulysin peptides serially diluted in PBS to final concen-

trations of 1, 10, and 100 μM. After 3 hours of incubation  

at room temperature, 100 μl aliquots of S. Typhimurium,  

F. tularensis, and B. mallei were plated on LB or LBG agar 

plates, and 100 μl aliquots of peptide and B. anthracis was 

plated on trypticase soy agar with 5% sheep blood. CFU’s 

were counted after overnight incubation (48h for B. mallei) 

at 37°C. Exponential growth phase cultures of Y. pestis 

CO92 or Y. pestis CO92 caf were grown overnight at 26°C 

versus 37°C
 
in Heart-Infusion Broth (HIB, Difco).

 
Cultures 

were diluted 1:100 after overnight growth and grown at 26°C 

and 37°C
 

to log phase
 

in HIB medium. Cultures were  

harvested by centrifugation and washed once with Phosphate 

buffered saline buffer (PBS, pH 7.4). Y. pestis (2 x 10
6
 CFU/ 

ml) were incubated with various concentration of granulysin 

as described above and plated on HIB agar plates. CFU’s 

were counted after 48h incubation at 26°C. Results for  

all isolates were verified by three (B. mallei, B. anthracis), 

four (S. Typhimurium, F. tularensis), or five (Y. pestis)  

independent
 

experiments. A total of five independent  

experiments were performed with Y. pestis to firmly  

establish the temperature-dependent differences in suscepti-

bility to peptide. Data were analyzed by one-way analysis  

of variance (ANOVA) followed by a Tukey’s pair wise  

comparison test (GraphPad Software v4.0).  

RESULTS 

 In this study, we tested the antimicrobial activity of the 

granulysin peptide against four aerosol-acquired select agent 
bacterial pathogens, B. anthracis, Y. pestis, F. tularensis, and 

B. mallei. S. Typhimurium was used as a positive control to 

compare the relative antibacterial activity of the peptide  
observed in earlier studies [7, 10, 12]. To normalize data 

across experiments and organisms, results in Fig. (1) are 

shown as percentage of control growth from each individual 
experiment. Statistically significant differences due to treat-

ment, however, were determined using actual CFU relative 

to peptide concentrations. A peptide derived from a region  
in granulysin previously determined to lack antimicrobial 

activity (helix 1) was used as a negative control [6, 7, 10].  

 In support of previous studies with peptide and recombi-

nant protein [7, 10, 12], we observed that granulysin peptide 

had potent antimicrobial activity against S. Typhimurium 

with a significant, dose dependent, increase in activity from 

1 to 100 μM peptide concentration (Fig. 1). A significant 

reduction of B. anthracis, F. tularensis, and B. mallei  

was evident at 10 and 100 μM of peptide (Fig. 1), though  

B. anthracis and F. tularensis were less susceptible to 100 

μM levels than B. mallei or S. Typhimurium. The concentra-

tion of peptide required to reduce CFU of B. anthracis and 

F. tularensis was comparable to peptide concentrations  

required to reduce Mtb and M. bovis, in similar studies [5, 7, 

12]. The killing activity of granulysin against F. tularensis 

SHU S4 (virulent) and LVS (attenuated vaccine strain) were 

similar (data not shown) indicating that susceptibility to 

granulysin peptide is not a likely variable in pathogenesis. 

Surprisingly, the negative control peptide derived from helix 

1 had moderate activity against B. anthracis at a concentra-

tion of 100 μM (38% reduction of CFU’s as compared to  

the no peptide control; data not shown). The growth of  

S. Typhimurium, Y. pestis, F. tularensis, or B. mallei, was 

not affected by the helix 1 peptide when compared to growth 

in the absence of peptide. Due to the effects of the helix 1 

peptide on B. anthracis, the no peptide control CFUs were 

used to calculate the percentage of control growth shown  

in Fig. (1). As shown in Fig. (2), Y. pestis growth was also 

 

 

 

 

 

 

 

 

Fig. (1). Antimicrobial activity of granulysin peptide against select agent pathogens. Reduction of S. Typhimurium, B. mallei,  

F. tularensis (SHU S4), and B. anthracis (Ames) by a peptide derived from the active site of granulysin (1, 10, 100 μM) displayed as a per-

centage of control (no peptide) growth. Data shown are mean ± SEM of three to four independent experiments performed in triplicate. 

*p<0.05; **p<0.01, indicate statistically significant differences between peptide treatment and negative control. 
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significantly reduced by the granulysin active site peptide in 

a dose-dependent manner. A growth temperature-dependent 

susceptibility of Y. pestis to cationic peptides has previously 

been characterized [13-15]. To determine if this effect could 

be observed with granulysin, Y. pestis was incubated with 

the peptide after growth at ambient temperature, generally 

corresponding to that in the flea arthropod vector (26°C), or 

human body temperature (37°C). When grown at ambient 

temperature to exponential growth phase, Y. pestis was much 

more resistant to the effects of granulysin peptide. In fact, 

the reduction of Y. pestis growth by granulysin peptide was 

several orders of magnitude greater when grown at 37°C, as 

compared to growth at 26°C (Fig. 2). As a percentage of the 

negative control, however, significant reduction of Y. pestis 

by 5 to 100 μM concentrations of granulysin peptide was 

evident at both temperatures (Fig. 2, numbers in parenthe-

sis). Recently, surface-exposed bacterial molecules (capsular 

antigen fraction 1) have been shown to modulate the suscep-

tibility of Y. pestis to antimicrobial molecules in the respira-

tory epithelium [16]. To evaluate the role of the capsule  

substance in the susceptibility of Y. pestis to granulysin, a 

capsule-negative mutant of Y. pestis CO 92 (Y. pestis CO 92 

caf) was also grown at both temperatures prior to incubation 

with peptide. The mutant contains a 1,176 bp deletion in the 

caf-operon eliminating synthesis of Caf1 capsular subunit 

and Caf1A usher proteins (V. Motin, unpublished). A  

temperature-dependent difference in killing activity by Y. 

pestis CO 92 caf was observed similar to the wild-type  

strain shown in Fig. (2), while the presence or absence of the 

capsule did not affect the susceptibility (data not shown). 

These differences in susceptibility to the antimicrobial  

effects of granulysin peptide, due to temperature, were  

not caused by altered growth patterns as organisms grew to 
similar density at both temperatures (Fig. 2).  

DISCUSSION 

 The identification of immune mechanisms that can  
protect against bacterial select agent pathogens is a critical 
component in the development of control measures for these 
potential biothreats. The important role of both innate and 
acquired cell-mediated immune (CMI) responses to intracel-
lular pathogens strongly supports the need to characterize 
CMI mechanisms that can be targeted to prevent disease or 
improve clinical outcome. In this study we showed that 
granulysin, a cytotoxic lymphocyte-derived antimicrobial, 
may have an important role in immunity to several important 
intracellular bacteria with select agent status.  

 Granulysin is a cationic molecule that consists of five 
compact -helical segments. Homologues of granulysin in 
multiple mammalian species, fish, and birds indicates con-
servation of this antimicrobial mechanism [2, 12, 17-21]. 
Curiously, a granulysin homologue has not been identified in 
mice, hampering studies of the effects of gene deletion. In 
contrast to other antimicrobial molecules of the immune sys-
tem, granulysin expression is limited to NK cells and anti-
gen-specific T cells, the cytotoxic component of the CMI 
response. Expression is constitutive in NK cells and induc-
ible in antigen specific T cells following activation with  
specific antigen or cytokines[1-3]. Native granulysin has 
chemoattractant capabilities [22] and has recently been  
implicated in adverse drug reactions that affect epidermal 
cells [23]. Normally, granulysin does not have cytotoxic  
effects on non-transformed human cells, while induction of 
apoptosis of tumor cells has been shown by several groups 
[10, 24, 25]. Peptide mapping in three separate species has 
characterized a core amino acid region including residues in 
helix 2 through helix 3 as the lytic site [6, 7, 10, 12]. The 
localization of the antimicrobial activity of granulysin to a 
short amino acid segment indicates the potential for use as a 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Activity of granulysin peptide against Y. pestis is growth temperature-dependent. CFU reduction of Y. pestis (CO 92) across 

granulysin peptide concentration when grown at 26°C and 37°C. Reduction of CFU following 3 h incubation with peptide was determined  

by overnight growth on HIB agar plates. Percentage reduction from control growth at representative peptide concentrations is shown in  

parenthesis. Data shown are mean ± SEM of five independent experiments. Compared to negative control, growth was significantly (p<0.01) 

reduced by 5 to 100 μM concentration of granulysin peptide at both 26 and 37°C. Effects of peptide on growth reduction were significantly 

different (p<0.05) at 26°C compared to 37°C from 5 to 100 μM concentration. 
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therapuetic peptide, as has been described for other small 
“killer” peptides [26]. Peptides derived from the lytic site of 
granulysin are able to reproduce the antimicrobial effects of  
recombinant granulysin. The activity of the derived peptide 
can exceed the recombinant molecule [5, 7], an effect that 
may be due to the harsh denaturing conditions required to 
purify the recombinant molecule or to a membrane contact 
advantage of the peptide. Nonetheless, this peptide is an im-
portant screening tool to identify the antibacterial potential 
of granulysin against different bacterial pathogens and may 
also have utility as a bactericidal therapeutic. Granulysin-
derived peptides have been shown to neutralize LPS simul-
taneously with direct bacterial killing and may have potential 
as a treatment for septic shock [11]. In the current study we 
also observed antimicrobial effects of the peptide derived 
from helix 1 of granulysin against B. anthracis. This result 
was unexpected, as peptides corresponding to the helix 1 
region of granulysin have previously been reported to have 
no antimicrobial activity [6, 7, 10] Following elucidation  
of the crystal structure of granulysin, however, the helix 1 
region was predicted to contribute to the antimicrobial activ-
ity of granulysin due to the distribution and orientation of 
positively charged amino acids in this region [27]. Further 
studies with peptides and site specific amino acid substitu-
tion in recombinant protein are needed to fully characterize 
the lytic sites utilized by granulysin against various classes 
of microbial pathogens. 

 Our results demonstrate that granulysin may have very 
potent lytic effects on Y. pestis and B. mallei and can reduce 
the growth of F. tularensis and B. anthracis at higher con-
centrations. The relative potency of granulysin to reduce 
bacterial numbers in the current study varied by organism, 
and in regards to Y. pestis, the effect is temperature depend-
ent. Collectively, the results from these and other studies 
suggest that the surface-exposed structures on microbial 
membranes that determine susceptibility to granulysin could 
differ among microorganisms, or vary in response to  
environmental signals. Peptides derived from granulysin  
are able to bind LPS and neutralize LPS-induced secretion  
of TNF  by peripheral blood mononuclear cells [11]. Differ-
ences in acylation of the LPS lipid A moiety due to  
environmental temperature is a defined mechanism for bacte-
rial resistance to antimicrobial peptides [28]. Antimicrobial 
peptides have a significant role in insect host defense and are 
an important selective pressure for survival of bacteria that 
utilize insect reservoirs. With regard to Y. pestis, growth at 
environmental temperature increases the resistance of Y. pes-
tis to cationic molecules with antimicrobial activity [13-15]. 
These differences are frequently attributed to temperature-
induced alterations in lipid A acylation [13-15, 29], though 
acyl transferase deficiency has no effect on Y. pestis suscep-
tibility to polymyxin B [30]. Very recently, bacterial capsule 
polysaccharides from several species were demonstrated to 
mediate resistance to both polymyxin B and alpha-defensin 
from human neutrophils and were proposed to act as bacte-
rial decoys for antibacterial peptides [31]. Susceptibility of 
Y. pestis to beta-defensin and cathelicidin was also recently 
shown to be mediated by the capsular antigen fraction [16]. 
In our studies, a Y. pestis variant deficient for the capsule 
substance was not more susceptible to granulysin peptide 
effects. Thus, the role of capsule polysaccharides as bacterial 

decoys may be an important difference between granulysin 
and other cationic antimicrobial molecules.  

 As previously observed, high concentrations of granu-
lysin are required to kill micro-organisms in bulk culture 
compared to antibiotics or many synthetic antimicrobials [5, 
7, 12]. An important difference between granulysin and other 
antimicrobials is that NK cells and antigen-specific T cells 
deliver granulysin to individual target cells at sites of infec-
tion. These cytotoxic immune cells are able to methodically 
kill one infected target at a time using only a portion of 
available granules while continually replenishing the granule 
armament. Perforin functions to increase membrane perme-
ability of target cells to facilitate entry and activity of granu-
lysin and granzymes [5, 32, 33]. Granulysin molecules are 
able to directly disrupt microbial membranes by electrostatic 
charge disruption [7, 27, 34]. Granulysin can also elicit  
extra-cellular microbicidal effects against pathogens[5, 9]. In 
this regard, both virulent Francisella and LVS were shown 
to have a significant extra-cellular phase in their in vivo life 
cycle [35].  

 The antibacterial effects of the granulysin peptide  

observed in the current study support continued investigation 

of granulysin as an important cytotoxic effector molecule 

contributing to the protective CMI responses to these and 

other serious biothreats. Promoting activation of granulysin 

expression by NK cells and T cells could represent an impor-

tant avenue for immune modulation to protect susceptible 

populations from weaponized or naturally occurring bacterial 

pathogens. Strategies to promote activation of NK cell an-

timicrobial activity may be very effective in the early innate 

immune response to several pathogens. Promoting antimi-

crobial protein expression as part of the effector repertoire of 

antigen-specific T cells may also improve vaccine efficacy. 

In summary, induction of granulysin by NK cells or antigen-

specific T cells should be further characterized as a mecha-

nism to augment protective immune function against  

intracellular bacterial pathogens.  
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