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Abstract:

Background: This study focuses on the Toxoplasma gondii (T. gondii) antigens ROP18, SAG1, and MIC13, which play
key  roles  in  pathogenesis,  immune  evasion,  and  host  invasion.  The  aim  was  to  design  a  novel  chimeric  antigen
combining these proteins as a potential vaccine candidate against T. gondii.

Methods: Fragments of ROP18 (Q101–E300), SAG1 (P61–G160), and MIC13 (D171–R320) were linked using a rigid
A(EAAAK)A linker.  Bioinformatics analyses predicted various properties of  the chimeric protein RSM1, including
transmembrane domains, B- and T-cell  epitopes, secondary and tertiary structures, antigenicity, physicochemical
traits, codon optimization, and mRNA structure.

Results: RSM1 consists of 485 amino acids and has an antigenicity score of 0.6694. The aliphatic index, instability
index,  and  GRAVY  score  were  68.66,  54.19,  and  –0.639,  respectively.  Structural  predictions  supported  RSM1’s
potential as a vaccine candidate. The most stable tertiary structure had a ΔG of –524.80 kcal/mol, with no stable
hairpins or pseudoknots at the mRNA 5′ end, suggesting favorable translation.

Discussion: The bioinformatics analyses indicate that RSM1 possesses favorable antigenic and structural properties,
supporting its potential as a multi-epitope vaccine candidate. Its predicted stability and translation efficiency suggest
practical viability, although the moderate instability index points to the need for further optimization.

Conclusion: RSM1 represents a promising in silico-designed vaccine candidate against T. gondii. This study lays the
groundwork for subsequent experimental evaluations to determine its immunogenicity and protective efficacy in vivo.
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1. INTRODUCTION
Toxoplasma  gondii  (T.  gondii)  is  an  obligate  intra-

cellular  zoonotic  parasite  reported in  a  variety  of  warm-
blooded and even cold-blooded animals [1-7]. This proto-
zoan  is  recognized  as  a  significant  food-borne  parasite
capable of infecting humans through the consumption of
contaminated drinking water or raw/unwashed vegetables
harboring mature oocysts, as well as through the ingestion
of undercooked or raw meat harboring tissue cysts [8, 9].

The  parasite’s  life  cycle  comprises  three  stages:
tachyzoite,  bradyzoite,  and  sporozoite  [10].  Tachyzoites
are  responsible  for  the  acute  phase,  while  bradyzoites
cause the chronic phase of the disease [11]. Toxoplasmosis
usually  remains  asymptomatic  in  immunocompetent
individuals.  However,  in  immunocompromised  patients,
chronic  infection  can  reactivate,  potentially  resulting  in
severe conditions such as toxoplasmic encephalitis, which
can be fatal [12]. In addition, pregnant women face risks
associated  with  this  infection,  including  miscarriages,
congenital  defects,  and  chorioretinitis  [13,  14].

Despite recent significant advances in the biology of T.
gondii,  the  treatment  of  toxoplasmosis  is  still  limited  to
controlling the tachyzoite stage, and current drugs cannot
eliminate  the  parasitic  cyst  [15].  Chemotherapeutic
options for T. gondii infection are limited. The two major
drugs  that  are  used  in  the  treatment  of  acute
toxoplasmosis are pyrimethamine and sulfadiazine, which
are  not  enough  when  they  are  used  alone  [15].
Additionally,  these  drugs  have  various  side  effects  [16].
Therefore,  the  development  of  a  peptide-based  vaccine
using  epitopes  that  stimulate  humoral  and  cellular
immune  responses  against  Toxoplasma  is  necessary  to
control the infection. For this purpose, parasite antigens
with  high  immunogenicity  are  targeted  [17].  Among  T.
gondii antigens, surface antigens (SAGs), rhoptry proteins
(ROPs),  microneme  proteins  (MICs),  and  dense  granule
proteins (GRAs) are considered potential antigenic targets
[18]. Given the complexity of the life cycle, diversity, and
variability  of  intracellular  parasite  antigens  such  as  T.
gondii,  vaccination  should  stimulate  the  immune  system
against multiple antigens [19]. MIC13 protein is crucial for
the  parasite’s  dissemination  within  the  host  [20].
Additionally,  ROP18,  a  secretory  antigen  expressed
exclusively during the tachyzoite stage, plays a vital role in
parasite  pathogenesis  [21].  Meanwhile,  SAG1 is  a  major
surface antigen found exclusively in the tachyzoite phase,
contributing  to  immune  evasion  and  attenuation  of
virulence  [22].  Consequently,  this  study  focuses  on
designing  a  vaccine  candidate  against  T.  gondii  by
utilizing  T-cell  and  B-cell  epitopes  derived  from  the
antigens  ROP18,  SAG1,  and  MIC13  using  in  silico
approaches.

2. MATERIALS AND METHODS

2.1. Sequence Retrieval
In 2024, amino acid sequences for ROP18, SAG1, and

MIC13 from the T. gondii RH strain were sourced from the
Universal  Protein  Resource  (UniProt)  (http://www.

uniprot.org/)  in  FASTA  format.  Among  the  available
sequences,  the  longest  sequence  was  selected  for  each
antigen  (ROP18  [UniProt:  Q2PAY2],  SAG1  [UniProt:
C7E5T3],  and  MIC13  [UniProt:  H9BC62]).  These
sequences  were  utilized  for  subsequent  computational
analyses.

2.2. Prediction of Transmembrane Domains and the
Signal Peptides

The transmembrane topology of the selected proteins
was assessed using the TMHMM server, which employs a
Hidden  Markov  Model  approach  [23].  Both  the  UniProt
and SignalP servers were used to evaluate the presence of
signal peptides within the proteins [24].

2.3. B-cell Epitope Prediction
B-cell  epitopes  were  predicted  using  the  Immune

Epitope  Database  (IEDB).  This  server  considers  several
parameters  to  increase  prediction  accuracy,  including
linear  epitope  prediction  [25],  β-turn  prediction  [26],
flexibility  [27],  antigenicity  [28],  hydrophilicity  [29],  and
surface accessibility [30].

2.4. MHC-I and MHC-II Epitopes
To identify potential epitopes that bind to major histo-

compatibility complex (MHC) molecules, antigen sequences
were analyzed using the IEDB server, with a focus on the
BALB/c  mouse  strain  alleles.  Following  IEDB  guidelines,
peptides  of  9  amino  acids  in  length  were  preferred,  and
epitopes  were  ranked  based  on  their  predictive  scores,
ranging  from  0  to  10  [31].

2.5. Fusion Peptide Design
For the design of a chimeric protein antigen, immuno-

genic epitopes derived from ROP18, SAG1, and MIC13 were
strategically  linked  via  a  helical  structure  containing  the
A(EAAAK)A  motif,  which  promotes  an  optimal  spatial
arrangement of the epitopes [32]. The A(EAAAK)A motif is
an  empirical  rigid  linker  that  maintains  proper  spacing
between  domains  [24].

2.6. Prediction of Secondary and Tertiary Structures
The Garnier-Osguthorpe-Robson (GOR) IV (https://npsa-

prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=
npsa_gor4.html)  method  was  employed  to  predict  the
secondary  structures,  assessing  the  probabilities  of  α-
helices,  β-sheets,  and  random  coils  [33].  The  ITASSER
server  (https://zhanglab.ccmb.med.umich.edu/I-TASSER)
was  utilized  to  generate  three-dimensional  (3D)
conformations  of  the  sequences,  resulting  in  confidence
scores known as confidence scores (C-scores) [24, 34]. This
server predicts protein structure and function. The C-score,
one of the most important outputs of the server, estimates
the  accuracy  and  quality  of  the  predicted  models  [34].
Additional  three-dimensional  (3D)  models  of  the  protein
sequences  were  produced  using  the  Molegro  Molecular
Viewer  software,  facilitated  through  SWISS-MODEL  [35].

2.7. Surveying Validation of the Tertiary Structure
The validity of the predicted 3D structure of the RSM1

protein  was  confirmed  using  the  Ramachandran  plot

http://www.uniprot.org/
http://www.uniprot.org/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html
https://zhanglab.ccmb.med.umich.edu/I-TASSER
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generator  included  in  the  SWISS-MODEL  program  to
assess stereochemical quality (https://swissmodel.expasy.
org/assess) [33]. This tool visualizes energetically favored
regions of backbone dihedral angles relative to amino acid
residues in a protein structure [33].

2.8.  Antigenicity,  Allergenicity,  and  Solubility
Evaluation

The  antigenicity  of  various  antigen  fragment
configurations  was  analyzed  using  VaxiJen  v.2.0
(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.htm
l),  where a  score above 0.5 indicates  potential  antigenic
properties,  reflecting a  server  accuracy of  between 70%
and  89%  depending  on  the  target  organism  [36].
Allergenicity  was  evaluated  through  the  Algpred  server
(http://www.imtech.res.in/raghava/algpred/),  which  offers
predictions  with  approximately  85%  accuracy  at  a
threshold  of  –0.4  [37].  Additionally,  protein  solubility
propensity  was  estimated  using  the  SOLpro  web  server
(http://scratch.proteomics.ics.uci.edu/),  particularly  for
expression  in  Escherichia  coli  (E.  coli)  [37].

2.9. Prediction of Physical and Chemical Properties
Physicochemical properties of the chimeric protein were

predicted  using  the  ProtParam  server  (http://web.expasy.
org/protparam/),  which  predicts  a  set  of  protein  features
including the molecular weight (MW), isoelectric point, total
number  of  positively  and  negatively  charged  residues,
estimated  half-life,  extinction  coefficient,  aliphatic  index,
instability index, grand average of hydropathicity (GRAVY),
and other physical and chemical properties [33].

2.10. Optimization of the Chimeric Gene
To  enhance  protein  expression  efficiency,  codon

optimization techniques were applied in this study, utilizing
the  European  Bioinformatics  Institute  (EBI)  database
(https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/)  for
reverse  translation  and  codon  optimization  [24,  38].

2.11. mRNA Structure Prediction
The mfold tool (http://unafold.rna.albany.edu/?q=mfold)

was utilized to evaluate the free energy of the 5′ ends of the
mRNA  derived  from  the  recombinant  gene,  providing
insights  into  the  thermodynamic  stability  of  the  mRNA
molecule  [24].

3. RESULTS

3.1. Information about Genes
The  investigation  identified  the  most  complete

sequences  for  the  ROP18  (UniProt:  Q2PAY2),  SAG1

(UniProt:  C7E5T3),  and  MIC13  (UniProt:  H9BC62)
antigens,  selected  based  on  their  substantial  lengths  of
554, 336, and 468 amino acids, respectively.

3.2. Prediction of Transmembrane Domains and the
Signal Peptides

Using  the  TMHMM  server,  none  of  the  selected
antigens  (ROP18,  SAG1,  and  MIC13)  were  found  to
contain  transmembrane domains.  This  finding highlights
the  importance  of  exposed  epitopes  on  cell  surfaces  for
effective  immunogenicity  and  informs  the  design  of
chimeric  antigens  to  exclude  transmembrane  domains.
The SignalP 4.1 server identified potential signal peptide
regions at positions 1–47 for ROP18, 1–25 for SAG1, and
1–22 for MIC13.

3.3. B-cell and T-cell Epitope Prediction
Initially,  T cell  epitopes of ROP18, MIC13, and SAG1

antigens were predicted separately. To assess the affinity
of these epitopes for MHC class I (H2-Kd, H2-Ld, H2-Dd)
and  class  II  (I-Ad,  I-Ed)  alleles  specific  to  the  BALB/c
mouse  strain,  the  antigen  sequences  were  submitted  to
the  IEDB  web  server.  The  server  predicts  peptides  of  9
amino acids in length, assigning scores ranging from 0 to
10. For each antigen, the fragment with the highest score
was selected. Subsequently, B-cell epitopes were selected
using IEDB data, considering factors such as accessibility,
hydrophilicity,  antigenicity,  flexibility,  linear  epitope
prediction,  and  beta-turn  propensity.  Considering  that
Th1-type responses are more critical than Th2 responses
in  infections  with  intracellular  parasites  such  as
Toxoplasma,  a  170-amino-acid  fragment  of  each  antigen
containing  multiple  strong  B-  and  T-cell  epitopes,  with
preference given to strong T-cell epitopes, was selected as
the  final  epitope.  Epitopes  were  chosen  from  the  initial
candidate  pool  based  on  the  following  criteria:  highest
binding affinity scores to MHC alleles (score > 9), overlap
between  B-  and  T-cell  epitope-rich  regions,  surface
accessibility,  antigenicity,  hydrophilicity,  flexibility,  and
distribution across different protein domains to maximize
immune coverage. Tables 1 and 2 present the predicted B-
and  T-cell  epitopes  identified  through  analyses  using
various  servers.

3.4. Segment Selection
Segments  of  the  ROP18  (Q101-E300),  SAG1  (P61-

G160),  and  MIC13  (D171-R320)  proteins  were
strategically  selected  for  the  construction  of  a  chimeric
antigen. The lengths of these segments were 200, 100, and
150 amino acids, respectively.

Table 1. Predicted linear B-cell epitopes of ROP18 (101-300), SAG1 (61-160), and MIC13 (171-320) antigens
using the IEDB server.

B-cell Parameters ROP18 SAG1 MIC13

Bepipred Linear Epitope 20-110, 125-140, 180-220,
240-340, 355-410, 515-550

20-80, 80-145, 145-245, 245-300,
300-330

70-95, 172-185, 208-222, 240-260, 305-320,
330-405, 417-445

Beta-Turn 40-145, 165-265, 285-380,
400-520

45-65, 90-115, 125-140, 160-170,
180-265, 285-295, 305-315

60-90, 105-133, 150-165, 200-220, 305-320,
330-345, 395-405, 420-445

https://swissmodel.expasy.org/assess
https://swissmodel.expasy.org/assess
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.imtech.res.in/raghava/algpred/
http://scratch.proteomics.ics.uci.edu/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/
http://unafold.rna.albany.edu/?q=mfold
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B-cell Parameters ROP18 SAG1 MIC13

Accessibility 50-190, 220-320, 445-550 60-100, 120-155, 165-210, 220-295 175-200, 218-235, 270-278, 285-318, 360-381

Flexibility 40-340, 370-450, 480-550 60-115, 120-170, 190-290, 305-315 70-97, 175-185, 205-245, 255-278, 305-318,
360-380, 400-410, 420-445

Antigenicity 20-40, 60-155, 190-285, 300-420,
470-540 25-120, 140-220, 280-300, 310-336 100-130, 150-170, 235-270, 280-305, 330-345,

440-453

Hydrophilicity 40-145, 165-340, 360-460,
480-550 55-115, 125-140, 160-240, 250-320 70-95, 173-185, 207-222, 240-260, 305-320,

330-345, 395-407, 415-445

Table 2. T-cell epitopes predicted from the IEDB server.

Protein Amino Acid Start Position1 - - Number of Binding
Epitopes2

Total3

Name H2-Kd H2-Ld H2-Dd I-Ad I-Ed MHC- I MHC- II

ROP18 115, 153,
204 -- 164, 172, 196, 213, 233,

250, 255, 259, 261, 287
101, 132, 142, 147, 153, 177,
201, 225, 227, 237, 239, 250,
251, 267, 277, 279, 292, 294

110, 115, 116, 120, 122,
123,145, 151, 154, 156, 160,
161, 162, 163, 166, 170, 173,

199, 230, 239, 242, 278
13 40 53

SAG1 79 -- 93, 109,139,149 62, 66, 68, 77, 90, 96, 109,
112, 119, 138, 140, 156 73, 78, 96, 110, 142, 157 5 18 23

MIC13 -- -- 190, 222, 228, 229, 308
182, 195, 200, 222, 227, 234,
237, 244, 248, 257, 265, 271,
284, 299

173, 183, 184, 185, 186, 193,
198, 297, 298, 300, 302, 303,

319
5 27 32

Note: 1: Epitopes with a score higher than 9.
2: The number of epitopes with a score higher than 9 that bind to MHC-I and MHC-II in ROP18 (101-300), SAG1 (61-160), and MIC13 (171-320) antigens.
3: Total number of epitopes with a score higher than 9 in ROP18 (101-300), SAG1 (61-160), and MIC13 (171-320) antigens.

3.5.  Prediction  and  Analysis  of  Secondary  and
Tertiary Structures

Analysis  of  the  secondary  structure  of  the  composite
protein RSM1, composed of 485 amino acids,  revealed a

secondary  structure  comprising  36.08%  alpha-helix,
49.69% random coil, and 14.23% extended strand (Fig. 1A
and B). The 3D structure model is shown in Fig. (2A and
B),  with  a  C-score  of  –2.00,  indicating  moderate  model
quality.

(Table 1) contd.....

Fig. 1 contd.....



In silico Analysis of Toxoplasma gondii Surface and Secretory Proteins 5

Fig.  (1).  (A).  Prediction  of  the  secondary  structure  of  RSM1  by  GOR  IV  online  service
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html).  h=helix,  e=extended strand,  and c=coil,  and (B)  Graphical
results for secondary structure prediction of RSM1 protein by GOR IV.

Fig.  (2).  (A)  Prediction  of  the  tertiary  structure  of  RSM1 using  I-TASSER service  (https://zhanglab.ccmb.med.umich.edu/I-TASSER)
(ROP18:  red,  SAG1:  yellow,  MIC13:  green,  and  linker:  white)  and  (B)  3D  model  by  the  SWISS-MODEL  server
(https://swissmodel.expasy.org/assess).

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html
https://zhanglab.ccmb.med.umich.edu/I-TASSER
https://swissmodel.expasy.org/assess
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3.6. Tertiary Structure Validation
The validation of the tertiary structure was performed

using the Ramachandran plot, which showed that 91.46%

of  the  residues  were  situated  in  the  favored  regions,
4.52%  in  allowed  regions,  and  4.02%  were  identified  as
outliers (Fig. 3).

Fig.  (3).  Validation  of  the  tertiary  structure  of  RSM1  protein  using  Ramachandran  plot  (https://swissmodel.expasy.org/assess).  The
analysis of Ramachandran plot statistics for the initial model revealed that 91.46% of amino acid residues from the structure modeled by
SWISS-MODEL were incorporated in the favored regions; whereas only 4.52% and 4.02% are in allowed and outlier regions of the plot,
respectively.

https://swissmodel.expasy.org/assess
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Fig.  (4).  The  prediction  of  the  secondary  structure  of  mRNA  using  mFold  (http://unafold.rna.albany.edu/?q=mfold).  The  predicted
structure lacks a hairpin and pseudo-knot at the 5′ site of the mRNA.

3.7.  Antigenicity,  Allergenicity,  and  Solubility
Assessment

None  of  the  chimeric  proteins  were  predicted  to  be
allergenic based on allergenicity assessments. Antigenicity
scores were calculated as follows: 0.6717 for MRS1, 0.6785
for RMS1, 0.6694 for RSM1, 0.6713 for MRS2, 0.6779 for
RMS2,  and  0.6690  for  RSM2.  The  solubility  of  the  fusion
protein  was  estimated  at  0.581,  indicating  favorable
characteristics  for  further  development.

3.8. Prediction of Physicochemical Properties
The RSM1 protein had an isoelectric point of 9.35 and a

MW  of  53.81  kDa.  The  protein  contained  57  negatively
charged  residues  (Asp  +  Glu)  and  75  positively  charged
residues  (Arg  +  Lys).  The  half-life  of  RSM1  was
approximately  30  hours  in  mammalian  reticulocytes  and
extended beyond 20 hours in yeast and 10 hours in E. coli.
Based on its instability index of 54.19, RSM1 was classified
as unstable. Its GRAVY value was –0.639, and its aliphatic
index was 68.66.

3.9. Optimization of the Codon
To enhance protein expression levels in E. coli, reverse

translation  was  executed  via  the  EBI  server  for  codon
optimization, ensuring that codons were optimized for the
target organism to maximize expression efficiency.

3.10. Prediction of mRNA Secondary Structure
The  mfold  server  was  used  to  predict  the  optimal

secondary  structure  of  the  mRNA,  revealing  a  ΔG  of
–524.80  kcal/mol.  The  Minimum  Free  Energy  (MFE)  for
the first 10 nucleotides at the 5′ end was –1.30 kcal/mol,
suggesting  that  the  formation  of  stable  pseudoknot  and
hairpin structures is unlikely (Fig. 4).

4. DISCUSSION
The  first  step  in  successful  vaccine  development  is

antigen  recognition,  followed  by  identification  of  the
parasite’s  immunodominant  epitopes  [39].  T.  gondii
expresses a wide variety of antigenic epitopes, and antigen
presentation  varies  among  individuals.  To  address  this
complexity, recent vaccine development increasingly relies
on  in  silico  approaches  that  use  bioinformatics  tools  to

http://unafold.rna.albany.edu/?q=mfold
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predict  and  select  highly  immunogenic  epitopes.  These
computational  methods  enable  the  identification  of
epitope-rich  regions  across  antigens,  enabling  more
targeted  vaccine  design  [40].  These  methods  can  signi-
ficantly reduce the time and cost of experimental testing
[41].  In  the  in  silico  method,  any  antigen  can  be
considered  a  vaccine  candidate;  however,  our  selection
strategy prioritized antigenic diversity by including both
surface  (e.g.,  SAGs)  and  secretory  (e.g.,  MICs,  ROPs)
antigens.  Vaccines  designed  to  elicit  responses  against
multiple  antigens  typically  offer  broader  protection
compared to those based on a single antigen, which often
lack sufficient cytotoxic T lymphocyte epitopes and fail to
induce sterile immunity in acute or chronic toxoplasmosis
[42-44].  Additionally,  we  selected  antigens  expressed
across all three life stages of the parasite to ensure a more
comprehensive  immune  response,  as  stage-specific
antigens tend to provide limited protection [45]. T. gondii
invades  host  cells  through  contact,  gliding  motility,
moving  junction  (MJ)  formation,  and  parasitophorous
vacuole (PV) development [46-48].  SAGs of T. gondii  are
integrated within the plasma membrane via glycosylphos-
phatidylinositol  anchors [49].  The MIC proteins are then
released  and  spread  over  the  parasite  surface.  These
proteins  are  involved  in  the  recognition  and  binding  to
host  cell  surfaces.  Furthermore,  the  synergy  and
interaction between rhoptry neck and MIC proteins in the
host  plasma  membrane  stimulate  gliding  motility  and
formation of the MJ [50-54]. Following MJ formation, the
parasite  invades  the  host  cell,  forms  a  PV,  and  secretes
ROPs, which are critical for PV development and host cell
manipulation [55-57]. The mechanism of action of each of
these  antigens,  ROPs,  MICs,  and  SAGs,  highlights  their
collective role in host cell invasion and underscores their
contribution to T. gondii virulence. Previous studies have
utilized  various  T.  gondii  antigens,  individually  or  in
combination,  to  develop  DNA-  or  protein-based  vaccines
[53, 58-61]. For example, Li et al. employed a recombinant
canine  adenovirus  (CAV-2)  expressing  the  ROP18  gene,
which  induced  strong  Th1-skewed  humoral  and  cellular
responses  in  mice  [61].  Petersen  et  al.  reported  that
intramuscular  vaccination  with  recombinant  SAG1  plus
alum  triggered  a  Th2-biased  response  and  resulted  in
limited survival [58]. Nabi et al.  demonstrated enhanced
antibody  responses  in  mice  immunized  intranasally  with
rROP18-loaded  nanospheres  compared  to  other  delivery
methods [60].  Wang et  al.  found that  a  combined SAG1-
MIC4  antigen  provided  greater  protection  than  either
antigen alone [53]. Additionally, multicomponent vaccines
such  as  MIC1-4  and  MIC1-4-6  elicited  stronger  immune
responses,  reduced  brain  parasite  loads,  and  improved
survival  rates  in  mice  [59].  In  another  study,  a
bioinformatics evaluation of the RMS protein, comprising
MIC13,  GRA1,  and  SAG1  antigens,  suggested  that  this
antigen  could  be  a  promising  candidate  for  the
development of a protective vaccine against T. gondii [62].
These  findings  underscore  the  superior  efficacy  of
multigene  vaccines  over  single-antigen  approaches  for
toxoplasmosis prevention. Sequence conservation analyses
further  revealed  that  these  antigens  possess  highly

conserved  regions  across  different  T.  gondii  strains,
supporting  their  potential  as  broad-spectrum  vaccine
targets.  SAG1,  for  instance,  is  highly  conserved  among
types  I,  II,  and  III  strains,  reinforcing  its  stability  as  a
vaccine candidate [63]. ROP18 exhibits allele variation but
retains  core  functional  domains  across  strains,  and  its
critical  role  in  virulence suggests  conserved regions  are
immunologically relevant [64]. MIC13, frequently included
in  multi-antigen  vaccines  alongside  conserved  antigens
like  SAG1  and  ROP18,  demonstrates  conserved
immunogenic  potential  [62,  65].  Together,  these  factors
guided  the  prioritization  of  these  antigens  over  others,
aiming  to  maximize  vaccine  efficacy  by  targeting  key
molecules involved in parasite-host interactions. Based on
this  rationale,  the  current  study  focuses  on  designing  a
chimeric  protein  vaccine  that  contains  B-  and  T-cell
epitopes  of  ROP18,  SAG1,  and  MIC13  antigens  of  T.
gondii, and analyzing various aspects of this protein using
different  bioinformatics  tools.  A  combination  of  three
antigens (ROP18, SAG1, and MIC13) was used for the first
time in the present study. On the other hand, T. gondii has
a  large  number  of  antigens  and  antigenic  epitopes.  The
most immunogenic epitopes of one antigen were selected
using  an  in  silico  method,  in  combination  with  the  most
immunogenic epitopes of the other two antigens, which is
a novel aspect of this study.

The  study  involved  the  construction  of  a  chimeric
protein  composed  of  three  specific  antigens:  ROP18,
SAG1,  and  MIC13.  During  epitope  selection,  unstable
regions and restriction sites were eliminated. CD8+ T cells
that secrete interferon-γ play a crucial role in combating
toxoplasmosis; however, the activation of B cells and the
production  of  antibodies  are  equally  vital  for  preventing
the proliferation of the parasite within tissues during the
chronic  phase  of  the  disease  [66].  Therefore,  in  the
selection  of  epitopes  from  these  three  antigens,  epitope
selection was based on the identification of fragments that
are immunodominant in both B and T cells. Structurally,
linkers used in multi-domain protein design are generally
classified into flexible, rigid, and in vivo cleavable linkers
[67]. Among these, rigid linkers are often more effective
than  flexible  linkers  for  the  separation  of  the  functional
domains [67]. One of the consequences of omitting a linker
or  using  an  inappropriate  one  is  the  misfolding  of  the
chimeric protein [68], reduced protein expression [69], or
the disruption of biological activity [70, 71]. In this study,
the objective was to identify immunodominant fragments
from these three antigens that would effectively stimulate
both B and T cells.  For this research, a rigid linker with
the sequence A(EAAAK)nA was employed to  connect  the
ROP18, SAG1, and MIC13 domains, with RSM1 chosen for
its high antigenic potential among various configurations.
This particular structure was notable for its low allergenic
properties  in  addition  to  its  elevated  antigenicity.
Antigenicity  refers  to  the  ability  of  a  protein  to  be
recognized by the immune system, and an adhesion found
in  the  T.  gondii  proteome  is  likely  to  be  antigenic.
However, antigenicity alone was not sufficient to select a
structure,  and  the  tertiary  structure  of  the  protein  was
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considered.  Therefore,  this  structure  should  select  final
models based on the tertiary structure. I-TASSER reports
up  to  five  models  that  correspond  to  the  five  largest
structure  clusters.  The  C-score  quantitatively  measures
the  confidence  of  each  model.  The  C-score  is  typically
within the range of -5 to 2, where a higher C-score value
signifies  a  model  with  high  confidence,  and  vice  versa.
Among  the  modeled  structures,  RSM1  achieved  the
highest  C-score,  identifying  it  as  the  most  suitable
candidate  for  further  investigation.  The  C-score  is  a
valuable  metric  for  evaluating  the  quality  of  predicted
protein  models,  with  higher  values  indicating  greater
confidence in the structural accuracy. In addition to this
metric,  structural  validation  was  performed  using  a
Ramachandran  plot,  which  assesses  the  stereochemical
quality  of  protein  models  and  offers  insight  into  their
potential  biological  functionality  [72].  RSM1  exhibited  a
favorable distribution of residues within the favored and
allowed regions of the Ramachandran plot, with minimal
representation  in  disallowed  regions,  reinforcing  its
classification as a high-quality model. Secondary structure
analysis  revealed  that  RSM1  consists  of  36.08%  alpha-
helix, 14.23% extended strand, and 49.69% random coil.
The presence of alpha helices and beta-turns is significant
for  maintaining  protein  stability  and  enhancing
interactions  with  antibodies  [73].

Additionally,  when  designing  a  vaccine,  the
physicochemical properties of the protein are fundamental.
In this case, the aliphatic index was calculated to be 68.66,
suggesting that the protein can maintain stability across a
broad  temperature  range.  However,  with  an  instability
index exceeding 40, the protein is expected to be unstable.
Another important characteristic is the GRAVY score, where
a negative GRAVY value suggests the protein is hydrophilic,
which implies better interaction with water molecules in its
environment [74]. The MW of the protein, a key factor for
immune  system  activation,  is  also  critical.  Since  an  MW
greater than 5 to 10 kDa is generally considered favorable
for immunogenicity [33],  RSM1, with its weight of 53.811
kDa,  emerges  as  a  promising  antigen  candidate.  The
isoelectric  point  is  a  key  physicochemical  property  that
plays a crucial role in assessing the solubility of proteins at
specific pH levels. By determining the isoelectric point, it is
possible  to  predict  protein  solubility.  Typically,  proteins
with a pH of the solution equal to or near their isoelectric
point  tend  to  precipitate  from  solution  [23].  Additionally,
the half-life of a protein refers to the time required for half
of the protein to be degraded following its synthesis within
a cell. The ProtParam tool, which estimates half-life based
on the N-terminal residue, may have limitations for certain
analyses [24]. An important factor in codon optimization is
the Codon Adaptation Index, which ranges from zero to one,
and a value of one indicates that a gene uses synonymous
codons for each amino acid with maximum frequency [75].
Poor  codon  adaptation  can  result  in  reduced  or  failed
protein  expression  [24].  Additionally,  mRNA  stability  is
influenced  by  its  MFE,  as  well  as  predictions  of  mRNA
secondary structure, which can be performed with tools like
mfold. According to mfold data, stable mRNA structures are
generally  more  favorable  for  efficient  translation  and

chimeric  protein  production  in  host  systems.  A  primary
limitation of this study is its reliance on in silico  analyses
based  on  computational  predictions  rather  than
experimental  validation.  While  bioinformatics  tools  are
powerful  for  predicting  protein  structures,  epitopes,  and
antigenicity,  the  actual  immunogenicity  and  biological
activity of the RSM1 chimeric protein can only be confirmed
through  in  vivo  studies.  B-  and  T-cell  epitope  prediction
tools depend on existing databases and algorithms that may
not  fully  capture  all  variables  influencing  immune
responses;  consequently,  predicted  epitopes  might  not
accurately  represent  their  immunogenic  potential  in
biological  systems.  In  addition,  the  prediction  of  T  cell
epitopes based on mouse-specific MHC alleles may limit the
generalizability of the findings to other species, as immune
responses  can  vary  significantly  across  genetic
backgrounds. To address these limitations and confirm the
immunogenic potential of the designed vaccine, this study
will  proceed to experimental  phases.  The RSM1 gene will
be cloned into a bacterial expression vector and expressed
in E. coli.  Following purification and quantification of  the
recombinant  protein,  immunization  studies  will  be
conducted  in  BALB/c  mice.  Humoral  and cellular  immune
responses  will  be  assessed  using  ELISA  and  cytokine
profiling, while protective efficacy will be evaluated through
challenge  experiments  and  survival  analyses.  These  steps
will  generate  essential  data  regarding  the  safety,
immunogenicity,  and  protective  efficacy  of  the  chimeric
vaccine  candidate.

CONCLUSION
In conclusion, this study employed in silico approaches

to  design  a  novel  chimeric  vaccine  candidate,  RSM1,  by
incorporating immunodominant epitopes derived from the
key antigens ROP18, SAG1, and MIC13 from T. gondii. In
silico  analysis  of  the  RSM1  construct  suggested  its
potential  as  a  promising  vaccine  construct  for  the
development  of  a  protective  vaccine  against  T.  gondii.
Therefore,  these  findings  underscore  the  utility  of
bioinformatics  tools  in  vaccine  development  and  enable
the  identification  of  epitopes  that  enhance  immune
responses.  However,  the  findings  from  in  silico  analysis
require  validation  through  heterologous  expression  and
subsequent in vivo experimentation.
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