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Abstract:

Background: This study focuses on the Toxoplasma gondii (T. gondii) antigens ROP18, SAG1, and MIC13, which play
key roles in pathogenesis, immune evasion, and host invasion. The aim was to design a novel chimeric antigen
combining these proteins as a potential vaccine candidate against T. gondii.

Methods: Fragments of ROP18 (Q101-E300), SAG1 (P61-G160), and MIC13 (D171-R320) were linked using a rigid
A(EAAAK)A linker. Bioinformatics analyses predicted various properties of the chimeric protein RSM1, including
transmembrane domains, B- and T-cell epitopes, secondary and tertiary structures, antigenicity, physicochemical
traits, codon optimization, and mRNA structure.

Results: RSM1 consists of 485 amino acids and has an antigenicity score of 0.6694. The aliphatic index, instability
index, and GRAVY score were 68.66, 54.19, and -0.639, respectively. Structural predictions supported RSM1’s
potential as a vaccine candidate. The most stable tertiary structure had a AG of -524.80 kcal/mol, with no stable
hairpins or pseudoknots at the mRNA 5" end, suggesting favorable translation.

Discussion: The bioinformatics analyses indicate that RSM1 possesses favorable antigenic and structural properties,
supporting its potential as a multi-epitope vaccine candidate. Its predicted stability and translation efficiency suggest
practical viability, although the moderate instability index points to the need for further optimization.

Conclusion: RSM1 represents a promising in silico-designed vaccine candidate against T. gondii. This study lays the

groundwork for subsequent experimental evaluations to determine its immunogenicity and protective efficacy in vivo.
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1. INTRODUCTION

Toxoplasma gondii (T. gondii) is an obligate intra-
cellular zoonotic parasite reported in a variety of warm-
blooded and even cold-blooded animals [1-7]. This proto-
zoan is recognized as a significant food-borne parasite
capable of infecting humans through the consumption of
contaminated drinking water or raw/unwashed vegetables
harboring mature oocysts, as well as through the ingestion
of undercooked or raw meat harboring tissue cysts [8, 9].

The parasite’s life cycle comprises three stages:
tachyzoite, bradyzoite, and sporozoite [10]. Tachyzoites
are responsible for the acute phase, while bradyzoites
cause the chronic phase of the disease [11]. Toxoplasmosis
usually remains asymptomatic in immunocompetent
individuals. However, in immunocompromised patients,
chronic infection can reactivate, potentially resulting in
severe conditions such as toxoplasmic encephalitis, which
can be fatal [12]. In addition, pregnant women face risks
associated with this infection, including miscarriages,
congenital defects, and chorioretinitis [13, 14].

Despite recent significant advances in the biology of T.
gondii, the treatment of toxoplasmosis is still limited to
controlling the tachyzoite stage, and current drugs cannot
eliminate the parasitic cyst [15]. Chemotherapeutic
options for T. gondii infection are limited. The two major
drugs that are used in the treatment of acute
toxoplasmosis are pyrimethamine and sulfadiazine, which
are not enough when they are used alone [15].
Additionally, these drugs have various side effects [16].
Therefore, the development of a peptide-based vaccine
using epitopes that stimulate humoral and cellular
immune responses against Toxoplasma is necessary to
control the infection. For this purpose, parasite antigens
with high immunogenicity are targeted [17]. Among T.
gondii antigens, surface antigens (SAGs), rhoptry proteins
(ROPs), microneme proteins (MICs), and dense granule
proteins (GRAs) are considered potential antigenic targets
[18]. Given the complexity of the life cycle, diversity, and
variability of intracellular parasite antigens such as T.
gondii, vaccination should stimulate the immune system
against multiple antigens [19]. MIC13 protein is crucial for
the parasite’s dissemination within the host [20].
Additionally, ROP18, a secretory antigen expressed
exclusively during the tachyzoite stage, plays a vital role in
parasite pathogenesis [21]. Meanwhile, SAG1 is a major
surface antigen found exclusively in the tachyzoite phase,
contributing to immune evasion and attenuation of
virulence [22]. Consequently, this study focuses on
designing a vaccine candidate against T. gondii by
utilizing T-cell and B-cell epitopes derived from the
antigens ROP18, SAG1, and MIC13 using in silico
approaches.

2. MATERIALS AND METHODS

2.1. Sequence Retrieval

In 2024, amino acid sequences for ROP18, SAG1, and
MIC13 from the T. gondii RH strain were sourced from the
Universal Protein Resource (UniProt) (http://www.
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uniprot.org/) in FASTA format. Among the available
sequences, the longest sequence was selected for each
antigen (ROP18 [UniProt: Q2PAY2], SAG1 [UniProt:
C7E5T3], and MIC13 [UniProt: H9BC62]). These
sequences were utilized for subsequent computational
analyses.

2.2. Prediction of Transmembrane Domains and the
Signal Peptides

The transmembrane topology of the selected proteins
was assessed using the TMHMM server, which employs a
Hidden Markov Model approach [23]. Both the UniProt
and SignalP servers were used to evaluate the presence of
signal peptides within the proteins [24].

2.3. B-cell Epitope Prediction

B-cell epitopes were predicted using the Immune
Epitope Database (IEDB). This server considers several
parameters to increase prediction accuracy, including
linear epitope prediction [25], B-turn prediction [26],
flexibility [27], antigenicity [28], hydrophilicity [29], and
surface accessibility [30].

2.4. MHC-I and MHC-II Epitopes

To identify potential epitopes that bind to major histo-
compatibility complex (MHC) molecules, antigen sequences
were analyzed using the IEDB server, with a focus on the
BALB/c mouse strain alleles. Following IEDB guidelines,
peptides of 9 amino acids in length were preferred, and
epitopes were ranked based on their predictive scores,
ranging from 0 to 10 [31].

2.5. Fusion Peptide Design

For the design of a chimeric protein antigen, immuno-
genic epitopes derived from ROP18, SAG1, and MIC13 were
strategically linked via a helical structure containing the
A(EAAAK)A motif, which promotes an optimal spatial
arrangement of the epitopes [32]. The A(EAAAK)A motif is
an empirical rigid linker that maintains proper spacing
between domains [24].

2.6. Prediction of Secondary and Tertiary Structures

The Garnier-Osguthorpe-Robson (GOR) IV (https://npsa-
prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=
npsa _gord.html) method was employed to predict the
secondary structures, assessing the probabilities of a-
helices, B-sheets, and random coils [33]. The ITASSER
server (https://zhanglab.ccmb.med.umich.edu/I-TASSER)
was utilized to generate three-dimensional (3D)
conformations of the sequences, resulting in confidence
scores known as confidence scores (C-scores) [24, 34]. This
server predicts protein structure and function. The C-score,
one of the most important outputs of the server, estimates
the accuracy and quality of the predicted models [34].
Additional three-dimensional (3D) models of the protein
sequences were produced using the Molegro Molecular
Viewer software, facilitated through SWISS-MODEL [35].

2.7. Surveying Validation of the Tertiary Structure

The validity of the predicted 3D structure of the RSM1
protein was confirmed using the Ramachandran plot
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generator included in the SWISS-MODEL program to
assess stereochemical quality (https://swissmodel.expasy.
org/assess) [33]. This tool visualizes energetically favored
regions of backbone dihedral angles relative to amino acid
residues in a protein structure [33].

2.8. Antigenicity, Allergenicity, and Solubility
Evaluation
The antigenicity of various antigen fragment

configurations was analyzed wusing VaxiJen v.2.0
(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.htm
1), where a score above 0.5 indicates potential antigenic
properties, reflecting a server accuracy of between 70%
and 89% depending on the target organism [36].
Allergenicity was evaluated through the Algpred server
(http://www.imtech.res.in/raghava/algpred/), which offers
predictions with approximately 85% accuracy at a
threshold of -0.4 [37]. Additionally, protein solubility
propensity was estimated using the SOLpro web server
(http://scratch.proteomics.ics.uci.edu/), particularly for
expression in Escherichia coli (E. coli) [37].

2.9. Prediction of Physical and Chemical Properties

Physicochemical properties of the chimeric protein were
predicted using the ProtParam server (http://web.expasy.
org/protparam/), which predicts a set of protein features
including the molecular weight (MW), isoelectric point, total
number of positively and negatively charged residues,
estimated half-life, extinction coefficient, aliphatic index,
instability index, grand average of hydropathicity (GRAVY),
and other physical and chemical properties [33].

2.10. Optimization of the Chimeric Gene

To enhance protein expression efficiency, codon
optimization techniques were applied in this study, utilizing
the European Bioinformatics Institute (EBI) database
(https://www.ebi.ac.uk/Tools/st/emboss backtranseq/) for
reverse translation and codon optimization [24, 38].

2.11. mRNA Structure Prediction

The mfold tool (http://unafold.rna.albany.edu/?q=mfold)
was utilized to evaluate the free energy of the 5" ends of the
mRNA derived from the recombinant gene, providing
insights into the thermodynamic stability of the mRNA
molecule [24].

3. RESULTS

3.1. Information about Genes

The investigation identified the most complete
sequences for the ROP18 (UniProt: Q2PAY2), SAGI1

(UniProt: C7ES5T3), and MIC13 (UniProt: H9BC62)
antigens, selected based on their substantial lengths of
554, 336, and 468 amino acids, respectively.

3.2. Prediction of Transmembrane Domains and the
Signal Peptides

Using the TMHMM server, none of the selected
antigens (ROP18, SAG1l, and MIC13) were found to
contain transmembrane domains. This finding highlights
the importance of exposed epitopes on cell surfaces for
effective immunogenicity and informs the design of
chimeric antigens to exclude transmembrane domains.
The SignalP 4.1 server identified potential signal peptide
regions at positions 1-47 for ROP18, 1-25 for SAG1, and
1-22 for MIC13.

3.3. B-cell and T-cell Epitope Prediction

Initially, T cell epitopes of ROP18, MIC13, and SAG1
antigens were predicted separately. To assess the affinity
of these epitopes for MHC class I (H2-Kd, H2-Ld, H2-Dd)
and class II (I-Ad, I-Ed) alleles specific to the BALB/c
mouse strain, the antigen sequences were submitted to
the IEDB web server. The server predicts peptides of 9
amino acids in length, assigning scores ranging from 0 to
10. For each antigen, the fragment with the highest score
was selected. Subsequently, B-cell epitopes were selected
using IEDB data, considering factors such as accessibility,
hydrophilicity, antigenicity, flexibility, linear epitope
prediction, and beta-turn propensity. Considering that
Th1l-type responses are more critical than Th2 responses
in infections with intracellular parasites such as
Toxoplasma, a 170-amino-acid fragment of each antigen
containing multiple strong B- and T-cell epitopes, with
preference given to strong T-cell epitopes, was selected as
the final epitope. Epitopes were chosen from the initial
candidate pool based on the following criteria: highest
binding affinity scores to MHC alleles (score > 9), overlap
between B- and T-cell epitope-rich regions, surface
accessibility, antigenicity, hydrophilicity, flexibility, and
distribution across different protein domains to maximize
immune coverage. Tables 1 and 2 present the predicted B-
and T-cell epitopes identified through analyses using
various servers.

3.4. Segment Selection

Segments of the ROP18 (Q101-E300), SAG1 (P61-
G160), and MIC13 (D171-R320) proteins were
strategically selected for the construction of a chimeric
antigen. The lengths of these segments were 200, 100, and
150 amino acids, respectively.

Table 1. Predicted linear B-cell epitopes of ROP18 (101-300), SAG1 (61-160), and MIC13 (171-320) antigens

using the IEDB server.

B-cell Parameters ROP18

SAG1 MIC13

20-110, 125-140, 180-220,

Bepipred Linear Epitope | 4 340 ‘355410, 515-550

20-80, 80-145, 145-245, 245-300, |70-95, 172-185, 208-222, 240-260, 305-320,
300-330

330-405, 417-445

40-145, 165-265, 285-380,

Beta-Turn 400-520

45-65, 90-115, 125-140, 160-170, |60-90, 105-133, 150-165, 200-220, 305-320,
180-265, 285-295, 305-315

330-345, 395-405, 420-445
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(Table 1) contd.....
B-cell Parameters ROP18 SAG1 MIC13
Accessibility 50-190, 220-320, 445-550 60-100, 120-155, 165-210, 220-295 (175-200, 218-235, 270-278, 285-318, 360-381
s 70-97, 175-185, 205-245, 255-278, 305-318,
Flexibility 40-340, 370-450, 480-550 60-115, 120-170, 190-290, 305-315 360-380, 400-410, 420-445
Antigenicity 20-40, 60-152,7(1)_95(31-0285, 300-420, 25-120, 140-220, 280-300, 310-336 111281112(3) 150-170, 235-270, 280-305, 330-345,
- 40-145, 165-340, 360-460, 70-95, 173-185, 207-222, 240-260, 305-320,
Hydrophilicity 480-550 55-115, 125-140, 160-240, 250-320 330-345, 395407, 415-445

Table 2. T-cell epitopes predicted from the IEDB server.

Protein Amino Acid Start Position’ Numléer. of Bl?dmg
pitopes Total’
Name | H2-Kd |H2-Ld H2-Dd I-Ad I-Ed MHC-1 | MHC- II
110, 115, 116, 120, 122,
Rop1g | 115153 164, 172, 196, 213, 233, %8} %;’g ég %g; %g; é;g 123,145, 151, 154, 156, 160, 13 20 53
204 250,255, 259, 261, 287 | 507 20 550 370 20 200 | 161, 162, 163, 166, 170, 173,
199, 230, 239, 242, 278
62, 66, 68, 77, 90, 96, 109,
SAG1 79 93, 109,139,149 e, 156, a0 150 73,78, 96, 110, 142, 157 5 18 23
182, 195, 200, 222, 227, 234, | 173, 183, 184, 185, 186, 193,
MIC13 190, 222, 228, 229, 308 |237. 244, 248, 257, 265, 271, | 198, 297, 298, 300, 302, 303, 5 27 32
284, 299 319

Note: 1: Epitopes with a score higher than 9.
2: The number of epitopes with a score higher than 9 that bind to MHC-I and MHC-II in ROP18 (101-300), SAG1 (61-160), and MIC13 (171-320) antigens.
3: Total number of epitopes with a score higher than 9 in ROP18 (101-300), SAG1 (61-160), and MIC13 (171-320) antigens.

secondary structure comprising 36.08% alpha-helix,
49.69% random coil, and 14.23% extended strand (Fig. 1A
and B). The 3D structure model is shown in Fig. (2A and
B), with a C-score of -2.00, indicating moderate model
quality.

3.5. Prediction and Analysis of Secondary and
Tertiary Structures

Analysis of the secondary structure of the composite
protein RSM1, composed of 485 amino acids, revealed a
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Fig. (1). (A). Prediction of  the secondary structure of RSM1 by GOR IV  online service
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?’page=npsa_gor4d.html). h=helix, e=extended strand, and c=coil, and (B) Graphical
results for secondary structure prediction of RSM1 protein by GOR IV.

A B

Fig. (2). (A) Prediction of the tertiary structure of RSM1 using I-TASSER service (https://zhanglab.ccmb.med.umich.edu/I-TASSER)
(ROP18: red, SAGl: yellow, MIC13: green, and linker: white) and (B) 3D model by the SWISS-MODEL server
(https://swissmodel.expasy.org/assess).
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3.6. Tertiary Structure Validation of the residues were situated in the favored regions,

The validation of the tertiary structure was performed 4.52% in allowed regions, and 4.02% were identified as
using the Ramachandran plot, which showed that 91.46% outliers (Fig. 3).

180°

Yo

s /

-180° 0° 180°

Fig. (3). Validation of the tertiary structure of RSM1 protein using Ramachandran plot (https://swissmodel.expasy.org/assess). The
analysis of Ramachandran plot statistics for the initial model revealed that 91.46% of amino acid residues from the structure modeled by
SWISS-MODEL were incorporated in the favored regions; whereas only 4.52% and 4.02% are in allowed and outlier regions of the plot,
respectively.
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Fig. (4). The prediction of the secondary structure of mRNA using mFold (http://unafold.rna.albany.edu/?q=mfold). The predicted

structure lacks a hairpin and pseudo-knot at the 5" site of the mRNA.

3.7. Antigenicity,
Assessment

Allergenicity, and Solubility

None of the chimeric proteins were predicted to be
allergenic based on allergenicity assessments. Antigenicity
scores were calculated as follows: 0.6717 for MRS1, 0.6785
for RMS1, 0.6694 for RSM1, 0.6713 for MRS2, 0.6779 for
RMS2, and 0.6690 for RSM2. The solubility of the fusion
protein was estimated at 0.581, indicating favorable
characteristics for further development.

3.8. Prediction of Physicochemical Properties

The RSM1 protein had an isoelectric point of 9.35 and a
MW of 53.81 kDa. The protein contained 57 negatively
charged residues (Asp + Glu) and 75 positively charged
residues (Arg + Lys). The halfllife of RSM1 was
approximately 30 hours in mammalian reticulocytes and
extended beyond 20 hours in yeast and 10 hours in E. coli.
Based on its instability index of 54.19, RSM1 was classified
as unstable. Its GRAVY value was -0.639, and its aliphatic
index was 68.66.

3.9. Optimization of the Codon

To enhance protein expression levels in E. coli, reverse
translation was executed via the EBI server for codon
optimization, ensuring that codons were optimized for the
target organism to maximize expression efficiency.

3.10. Prediction of mRNA Secondary Structure

The mfold server was used to predict the optimal
secondary structure of the mRNA, revealing a AG of
-524.80 kcal/mol. The Minimum Free Energy (MFE) for
the first 10 nucleotides at the 5" end was -1.30 kcal/mol,
suggesting that the formation of stable pseudoknot and
hairpin structures is unlikely (Fig. 4).

4. DISCUSSION

The first step in successful vaccine development is
antigen recognition, followed by identification of the
parasite’s immunodominant epitopes [39]. T. gondii
expresses a wide variety of antigenic epitopes, and antigen
presentation varies among individuals. To address this
complexity, recent vaccine development increasingly relies
on in silico approaches that use bioinformatics tools to
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predict and select highly immunogenic epitopes. These
computational methods enable the identification of
epitope-rich regions across antigens, enabling more
targeted vaccine design [40]. These methods can signi-
ficantly reduce the time and cost of experimental testing
[41]. In the in silico method, any antigen can be
considered a vaccine candidate; however, our selection
strategy prioritized antigenic diversity by including both
surface (e.g., SAGs) and secretory (e.g., MICs, ROPs)
antigens. Vaccines designed to elicit responses against
multiple antigens typically offer broader protection
compared to those based on a single antigen, which often
lack sufficient cytotoxic T lymphocyte epitopes and fail to
induce sterile immunity in acute or chronic toxoplasmosis
[42-44]. Additionally, we selected antigens expressed
across all three life stages of the parasite to ensure a more
comprehensive immune response, as stage-specific
antigens tend to provide limited protection [45]. T. gondii
invades host cells through contact, gliding motility,
moving junction (M]) formation, and parasitophorous
vacuole (PV) development [46-48]. SAGs of T. gondii are
integrated within the plasma membrane via glycosylphos-
phatidylinositol anchors [49]. The MIC proteins are then
released and spread over the parasite surface. These
proteins are involved in the recognition and binding to
host cell surfaces. Furthermore, the synergy and
interaction between rhoptry neck and MIC proteins in the
host plasma membrane stimulate gliding motility and
formation of the MJ [50-54]. Following M] formation, the
parasite invades the host cell, forms a PV, and secretes
ROPs, which are critical for PV development and host cell
manipulation [55-57]. The mechanism of action of each of
these antigens, ROPs, MICs, and SAGs, highlights their
collective role in host cell invasion and underscores their
contribution to T. gondii virulence. Previous studies have
utilized various T. gondii antigens, individually or in
combination, to develop DNA- or protein-based vaccines
[53, 58-61]. For example, Li et al. employed a recombinant
canine adenovirus (CAV-2) expressing the ROP18 gene,
which induced strong Thl-skewed humoral and cellular
responses in mice [61]. Petersen et al. reported that
intramuscular vaccination with recombinant SAG1 plus
alum triggered a Th2-biased response and resulted in
limited survival [58]. Nabi et al. demonstrated enhanced
antibody responses in mice immunized intranasally with
rROP18-loaded nanospheres compared to other delivery
methods [60]. Wang et al. found that a combined SAG1-
MIC4 antigen provided greater protection than either
antigen alone [53]. Additionally, multicomponent vaccines
such as MIC1-4 and MIC1-4-6 elicited stronger immune
responses, reduced brain parasite loads, and improved
survival rates in mice [59]. In another study, a
bioinformatics evaluation of the RMS protein, comprising
MIC13, GRA1, and SAG1 antigens, suggested that this
antigen could be a promising candidate for the
development of a protective vaccine against T. gondii [62].
These findings underscore the superior efficacy of
multigene vaccines over single-antigen approaches for
toxoplasmosis prevention. Sequence conservation analyses
further revealed that these antigens possess highly
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conserved regions across different T. gondii strains,
supporting their potential as broad-spectrum vaccine
targets. SAG1, for instance, is highly conserved among
types I, II, and IIT strains, reinforcing its stability as a
vaccine candidate [63]. ROP18 exhibits allele variation but
retains core functional domains across strains, and its
critical role in virulence suggests conserved regions are
immunologically relevant [64]. MIC13, frequently included
in multi-antigen vaccines alongside conserved antigens
like SAG1 and ROP18, demonstrates conserved
immunogenic potential [62, 65]. Together, these factors
guided the prioritization of these antigens over others,
aiming to maximize vaccine efficacy by targeting key
molecules involved in parasite-host interactions. Based on
this rationale, the current study focuses on designing a
chimeric protein vaccine that contains B- and T-cell
epitopes of ROP18, SAG1, and MIC13 antigens of T.
gondii, and analyzing various aspects of this protein using
different bioinformatics tools. A combination of three
antigens (ROP18, SAG1, and MIC13) was used for the first
time in the present study. On the other hand, T. gondii has
a large number of antigens and antigenic epitopes. The
most immunogenic epitopes of one antigen were selected
using an in silico method, in combination with the most
immunogenic epitopes of the other two antigens, which is
a novel aspect of this study.

The study involved the construction of a chimeric
protein composed of three specific antigens: ROP18,
SAG1, and MIC13. During epitope selection, unstable
regions and restriction sites were eliminated. CD8+ T cells
that secrete interferon-y play a crucial role in combating
toxoplasmosis; however, the activation of B cells and the
production of antibodies are equally vital for preventing
the proliferation of the parasite within tissues during the
chronic phase of the disease [66]. Therefore, in the
selection of epitopes from these three antigens, epitope
selection was based on the identification of fragments that
are immunodominant in both B and T cells. Structurally,
linkers used in multi-domain protein design are generally
classified into flexible, rigid, and in vivo cleavable linkers
[67]. Among these, rigid linkers are often more effective
than flexible linkers for the separation of the functional
domains [67]. One of the consequences of omitting a linker
or using an inappropriate one is the misfolding of the
chimeric protein [68], reduced protein expression [69], or
the disruption of biological activity [70, 71]. In this study,
the objective was to identify immunodominant fragments
from these three antigens that would effectively stimulate
both B and T cells. For this research, a rigid linker with
the sequence A(EAAAK)nA was employed to connect the
ROP18, SAG1, and MIC13 domains, with RSM1 chosen for
its high antigenic potential among various configurations.
This particular structure was notable for its low allergenic
properties in addition to its elevated antigenicity.
Antigenicity refers to the ability of a protein to be
recognized by the immune system, and an adhesion found
in the T. gondii proteome is likely to be antigenic.
However, antigenicity alone was not sufficient to select a
structure, and the tertiary structure of the protein was
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considered. Therefore, this structure should select final
models based on the tertiary structure. -TASSER reports
up to five models that correspond to the five largest
structure clusters. The C-score quantitatively measures
the confidence of each model. The C-score is typically
within the range of -5 to 2, where a higher C-score value
signifies a model with high confidence, and vice versa.
Among the modeled structures, RSM1 achieved the
highest C-score, identifying it as the most suitable
candidate for further investigation. The C-score is a
valuable metric for evaluating the quality of predicted
protein models, with higher values indicating greater
confidence in the structural accuracy. In addition to this
metric, structural validation was performed using a
Ramachandran plot, which assesses the stereochemical
quality of protein models and offers insight into their
potential biological functionality [72]. RSM1 exhibited a
favorable distribution of residues within the favored and
allowed regions of the Ramachandran plot, with minimal
representation in disallowed regions, reinforcing its
classification as a high-quality model. Secondary structure
analysis revealed that RSM1 consists of 36.08% alpha-
helix, 14.23% extended strand, and 49.69% random coil.
The presence of alpha helices and beta-turns is significant
for maintaining protein stability and enhancing
interactions with antibodies [73].

Additionally, when designing a vaccine, the
physicochemical properties of the protein are fundamental.
In this case, the aliphatic index was calculated to be 68.66,
suggesting that the protein can maintain stability across a
broad temperature range. However, with an instability
index exceeding 40, the protein is expected to be unstable.
Another important characteristic is the GRAVY score, where
a negative GRAVY value suggests the protein is hydrophilic,
which implies better interaction with water molecules in its
environment [74]. The MW of the protein, a key factor for
immune system activation, is also critical. Since an MW
greater than 5 to 10 kDa is generally considered favorable
for immunogenicity [33], RSM1, with its weight of 53.811
kDa, emerges as a promising antigen candidate. The
isoelectric point is a key physicochemical property that
plays a crucial role in assessing the solubility of proteins at
specific pH levels. By determining the isoelectric point, it is
possible to predict protein solubility. Typically, proteins
with a pH of the solution equal to or near their isoelectric
point tend to precipitate from solution [23]. Additionally,
the half-life of a protein refers to the time required for half
of the protein to be degraded following its synthesis within
a cell. The ProtParam tool, which estimates half-life based
on the N-terminal residue, may have limitations for certain
analyses [24]. An important factor in codon optimization is
the Codon Adaptation Index, which ranges from zero to one,
and a value of one indicates that a gene uses synonymous
codons for each amino acid with maximum frequency [75].
Poor codon adaptation can result in reduced or failed
protein expression [24]. Additionally, mRNA stability is
influenced by its MFE, as well as predictions of mRNA
secondary structure, which can be performed with tools like
mfold. According to mfold data, stable mRNA structures are
generally more favorable for efficient translation and

chimeric protein production in host systems. A primary
limitation of this study is its reliance on in silico analyses
based on computational predictions rather than
experimental validation. While bioinformatics tools are
powerful for predicting protein structures, epitopes, and
antigenicity, the actual immunogenicity and biological
activity of the RSM1 chimeric protein can only be confirmed
through in vivo studies. B- and T-cell epitope prediction
tools depend on existing databases and algorithms that may
not fully capture all variables influencing immune
responses; consequently, predicted epitopes might not
accurately represent their immunogenic potential in
biological systems. In addition, the prediction of T cell
epitopes based on mouse-specific MHC alleles may limit the
generalizability of the findings to other species, as immune
responses can vary significantly across genetic
backgrounds. To address these limitations and confirm the
immunogenic potential of the designed vaccine, this study
will proceed to experimental phases. The RSM1 gene will
be cloned into a bacterial expression vector and expressed
in E. coli. Following purification and quantification of the
recombinant protein, immunization studies will be
conducted in BALB/c mice. Humoral and cellular immune
responses will be assessed using ELISA and cytokine
profiling, while protective efficacy will be evaluated through
challenge experiments and survival analyses. These steps
will generate essential data regarding the safety,
immunogenicity, and protective efficacy of the chimeric
vaccine candidate.

CONCLUSION

In conclusion, this study employed in silico approaches
to design a novel chimeric vaccine candidate, RSM1, by
incorporating immunodominant epitopes derived from the
key antigens ROP18, SAG1, and MIC13 from T. gondii. In
silico analysis of the RSM1 construct suggested its
potential as a promising vaccine construct for the
development of a protective vaccine against T. gondii.
Therefore, these findings underscore the utility of
bioinformatics tools in vaccine development and enable
the identification of epitopes that enhance immune
responses. However, the findings from in silico analysis
require validation through heterologous expression and
subsequent in vivo experimentation.
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