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Abstract:
Background and Aims: Coagulase-negative staphylococci  (CoNS) are commonly found on the skin and mucous
membranes  of  humans  and  animals.  Many  of  them,  such  as  Staphylococcus  epidermidis,  Staphylococcus
haemolyticus, and Staphylococcus petrasii, are significant causes of various diseases. Staphylococcus spp. is typically
a commensal microorganism that can exist in the human body and often does not cause any illness. A bacterium
possessing virulence factors, such as biofilm formation, is significant because these factors enhance its ability to
cause  disease.  As  biofilms  shield  bacteria  from  opsonophagocytosis  and  antimicrobial  agents,  they  can  cause
persistent or chronic infections. This study aimed to examine biofilm formation in coagulase-negative Staphylococcus
as a strategy to prevent and manage infection, thereby supporting public health maintenance and improvement. It
focused on characterizing local S. epidermidis and S. haemolyticus isolates using molecular techniques, particularly
multilocus  sequence  typing  (MLST),  with  the  goal  of  advancing  epidemiological  understanding  and  surveillance
efforts.

Methods: In this study, samples were collected, and the species were identified using the VITEK 2 Compact system.
A Kirby-Bauer disc diffusion test was carried out to detect antimicrobial susceptibility, and the biofilm production was
tested with a microtiter plate. Multilocus sequence typing (MLST) was performed, followed by data processing using
the Oxford scheme to categorize the isolates.

Results: The isolates included 13.3% (n=20) S.epidermidis, 20% (n=30) S. haemolyticus, 23.3% (n=35) coagulase-
positive  staphylococci,  26%  (n=39)  Gram-negative  bacteria,  and  17.3%  (n=26)  showed  no  growth.  Coagulase-
negative Staphylococcus (CoNS) isolates exhibited 100% resistance to amoxiclav, cefoxitin, methicillin, amoxicillin,
and ceftriaxone.  High resistance  was  observed against  piperacillin  (96%),  ceftazidime (96%),  fusidic  acid  (76%),
tobramycin (68%), tetracycline (68%), gentamicin (66%), and azithromycin (66%). Moderate resistance was noted for
vancomycin  (52%),  clindamycin  (46%),  lincomycin  (42%),  ciprofloxacin  (42%),  and  levofloxacin  (40%).  Lower
resistance rates were recorded for trimethoprim-sulfamethoxazole (38%), rifampicin (38%), nitrofurantoin (18%),
meropenem (10%), and chloramphenicol (2%). Notably, 76% of isolates were classified as multidrug-resistant (MDR).
Biofilm formation was observed in 100% of isolates, with 58% showing strong, 30% moderate, and 12% weak biofilm
production.  MLST  analysis  revealed  genetic  diversity  among  local  S.  epidermidis  and  S.  hemolyticus  isolates,
identifying several sequence types (STs), including STs (23, 59, 89, 35, 1183) for S. epidermidis and STs (24, 35, 109,
173, 146) for S. hemolyticus, some of which were reported for the first time in Iraq.

Conclusion: This study offers significant insights into the prevalence, antibiotic resistance patterns, and genotypic
variation of S.epidermidis and S.haemolyticus strains in Anbar, Iraq. Additionally, it identifies several strains with
novel MLST data, marking the first instance of such findings in Iraq, including strain S.epidermidis with IDs (46590,
46588, 46587, 46591, 46592) and S.haemolyticus with IDs (240, 241, 242, 243, 244).
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1. INTRODUCTION
Coagulase-negative  staphylococci  (CoNS),  including

Staphylococcus  epidermidis  and  Staphylococcus
haemolyticus,  are  commonly  present  on  the  skin  and
mucous  membranes  of  humans  and  animals  [1].

They  are  acknowledged  as  opportunistic  pathogens,
with  Staphylococcus  epidermidis  being  the  primary
coagulase-negative Staphylococcus (CoNS) responsible for
healthcare-associated  infections  (HAIs)  [2].  HAIs,
previously  known  as  nosocomial  or  hospital-acquired
infections,  are  infections  acquired  by  patients  during
medical treatment in healthcare settings. They are a major
contributor  to  illness  and  death  among  hospitalized
patients [3]. According to the World Health Organization
(WHO),  approximately  7%  of  hospitalized  patients  in
developed countries and 10% in developing countries are
estimated  to  acquire  at  least  one  healthcare-associated
infection (HAI) at any given time [4]. CoNS are primarily
recognized as commensals on human and animal bodies,
but  they  can  also  act  as  opportunistic  pathogens.  The
composition of commensal skin flora varies by body site,
reflecting the differing environmental conditions at each
location  [5].  It  is  noteworthy  that  biofilm-associated
infections  resist  responding  to  different  antimicrobial
agents,  the immune system, as well  as harsh conditions;
thus,  biofilm  formation  is  an  important  characteristic  in
the progression of pathogenicity. Biofilm-forming isolates
contribute  to  infections  associated  with  catheters  and
other  medical  equipment  [6].  Biofilm-producing  S.
haemolyticus is a major cause of bacteremia, particularly
in catheter-associated and nosocomial infections. Biofilm
formation by S. haemolyticus is a complex process that is
further enhanced in the presence of antimicrobial agents
[7].  These  biofilm-producing  CoNS  are  increasingly
reported  to  be  resistant  to  “methicillin”  and  various
antibiotic classes, including lincosamides and macrolides.
This  growing  resistance  poses  a  significant  challenge  in
treating  clinical  infections,  complicating  antibiotic
selection for patient care [8]. The most commonly isolated
MR-CoNS species  in  hospitals  are  S.  epidermidis  and  S.
haemolyticus [9].

MLST  is  a  molecular  typing  technique  employed  for
bacteria  identification  and  classification.  It  relies  on
analyzing  DNA  sequences  from  seven  highly  conserved
housekeeping  genes  essential  for  cellular  function  [10].
These  gene  sequences  are  amplified  via  PCR  and  then

compared  against  a  reference  database  of  known  MLST
types, allowing for the identification and assignment of the
isolate to an MLST type. This classification offers insights
into  the  bacterium's  genetic  lineage  and  potential
pathogenicity [11]. This study aimed to identify prevalent
local isolates and distinguish infectious pathogen strains
using MLST to enhance epidemiological surveillance and
strain  source determination.  Additionally,  it  investigated
biofilm formation and antibiotic susceptibility patterns in
Staphylococcus  isolates.  Given  its  role  as  a  significant
human  pathogen,  particularly  in  immunocompromised
individuals,  long-term  hospitalized  patients,  and  those
with severe illnesses, understanding its genetic diversity
and  resistance  profiles  is  crucial  for  effective  infection
control.

2. MATERIALS AND METHODS

2.1. Bacterial Sampling and Identification
Between December 2022 and June 2023, a total of 150

clinical samples were collected, including wounds, burns,
urine,  ear  swabs,  and  blood  samples.  Staphylococcus
isolates  were  identified  based  on  their  growth  on  blood
agar and mannitol salt agar. Characterization was carried
out using conventional microbiological methods, including
colonial  morphology,  Gram  staining,  and  biochemical
tests. Final identification was conducted using the VITEK
2  Compact  system  (bioMérieux,  France),  following  the
bacterial  identification  protocol  cited  previously  [10].

2.2. Detection of Antibiotic Resistance Profile
The  Kirby-Bauer  disc  diffusion  method  used  19

antibiotic discs (“Oxoid, UK”). The antibiotic susceptibility
of  the  isolates  was  tested against  a  range of  antibiotics,
including  amoxiclav,  cefoxitin,  methicillin,  amoxicillin,
ceftriaxone,  piperacillin,  ceftazidime,  fusidic  acid,
tobramycin,  tetracycline,  gentamicin,  azithromycin,
vancomycin,  clindamycin,  lincomycin,  ciprofloxacin,
levofloxacin,  trimethoprim-sulfamethoxazole,  rifampicin,
nitrofurantoin,  meropenem,  and  chloramphenicol.

2.3. Biofilm Formation
Biofilm production was assessed using the microtiter

plate method, as described by Yousefi et al. (2016).

2.4. Molecular Screening of mecA Gene
Bacterial DNA was extracted using the Promega DNA

Mini  Kit  provided by Promega,  USA. DNA was extracted
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from the bacteria, and its purity was measured. A specific
gene,  mecA,  was  then  tested  for  forward  “(5′-
TCCAGATTACAACTTCACCAGG-3′)”  and  reverse  “(5′-
CCACTTCATATCTTGTAACG-3′)”  primers,  following  the
method described by Ghaznavi-Rad et al. The PCR mixture
(20 µL total volume) included 10 µL master mix (Thermo
Scientific, USA), 0.5 µL of each 10 µM primer, 1 µL DNA
template,  and  8  µL  nuclease-free  water.  The  PCR  was
carried  out  on  a  Bio-Rad  MyCycler™  (USA)  with  the
following  settings:  initial  denaturation  at  98°C  for  30
seconds, 28 cycles of denaturation (98°C for 10 seconds),
annealing (52°C for 30 seconds), and extension (72°C for
30 seconds), followed by a final extension at 72°C for (5
minutes) and a hold at 4°C. PCR products were analyzed
by gel electrophoresis at 58 V for 120 minutes on a 1.4%
agarose gel containing 0.5 µL gel stain (Bioteke, China). A
100  bp  DNA  ladder  (Vivantis,  Malaysia)  served  as  a
marker. The gel was visualized under UV light and imaged
using a gel imager (Major Science, USA) [12].

2.5. Multilocus Sequence Typing
All strains were analyzed by the MLST protocol using

primers listed in Tables 1 and 2. All PCR reactions were
carried  out  in  Applied  Biosystems  2720  Thermal  Cycler
(USA).

2.6. Statistical Analysis
Statistical analyses were performed using a chi-square

test  to  determine  whether  the  distribution  of  resistance
percentages  varies  for  each  antibiotic,  along  with  the
relationship  between  the  source  of  isolate  and  biofilm
formation.

2.7. Ethical Approval
The  study  obtained  approval  from  the  Ethics

Committee  of  Al  Anbar  Medical  Research  University
(approval number 23, December 5th, 2022). All participants
provided consent,  and no individuals  under 16 years old
were involved.

Table 1. Genes and primer sequence for Staphylococcus haemolyticus used in the MLST scheme [13].

Amplicon Size Primer Sequence (5-3) Gene Loci

600 F AGTGACTCAAGTTGAA
R AATCTTACCATCTAGG Arca

540 F CGGTAATGTAACACACGCAGT
R TCTTCCTAGTAGCTGACCAG SH 1200b

500 F CTGATCGTCAAGCTGAAGCAT
R GTACCTGTGTGACCCTCAGA HemHC

650 F AGCCATAGATTCGCATGGTGT
R CCTAATGAACCTGGAATGGTAG leuBd

600 F TCAGACCAATTCCCAACC
R CTTTAGCGTCACGATGGTCG SH 1431e

500 F GAAGCACAAATTGATGGTCTGC
R TCTGCCCCATTATCAACACA CfxE f

650 F GAGACGATTCAGCTAAGCAA
R CGCCTTTCATTAGGCCATTA Ribose ABC

Table 2. Genes and primer sequence for Staphylococcus epidermidis used in the MLST scheme [14].

Gene Primer sequence (5′–3′) Amplicon (bp)

arcC F TGTGATGAGCACGCTACCGTTAG
R TCCAAGTAAACCCATCGGTCTG 508

aroE F CATTGGATTACCTCTTTGTTCAGC
“R CAAGCGAAATCTGTTGGGG” 459

gtr “F CAGCCAATTCTTTTATGACTTTT”
“R GTGATTAAAGGTATTGATTTGAAT” 508

mutS F GATATAAGAATAAGGGTTGTGAA
R GTAATCGTCTCAGTTATCATGTT 608

pyr F GTTACTAATACTTTTGCTGTGTTT
R GTAGAATGTAAAGAGACTAAAATGAA 851

Tpi F ATCCAATTAGACGCTTTAGTAAC
R TTAATGATGCGCCACCTACA 592

yqiL F CACGCATAGTATTAGCTGAAG
R CTAATGCCTTCATCTTGAGAAATAA 658
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3. RESULTS AND DISCUSSION

3.1. Phenotypic Identification of Clinical Isolates
In the period from December 2022 to June 2023, 150

samples  were  collected  from  clinical  sources,  including
patients  of  both  sexes  from  different  teaching  hospitals
and  outpatients  in  Anbar/Iraq.  All  these  samples  were
grown on mannitol salt agar and blood agar. The bacterial
isolates included were 13.3% (n=20) S. epidermidis, 20%
(n=30) S. haemolyticus, 23.3% (n=35) coagulase-positive
staphylococci,  26%  (n=39)  Gram-negative  bacteria,  and
17.3% (n=26) showed no growth. Higher prevalence rates
of  methicillin-resistant  coagulase-negative  staphylococci
(MRCoNS) have been reported in South Africa, reporting
86%  in  one  study  [14]  and  100%  in  another  study  [15].
Among  CoNS  associated  with  infections,  S.  epidermidis
and  S.  haemolyticus  are  recognized  as  significant
etiological  agents  causing  nosocomial  infections  [16].
Notably,  S.  epidermidis  is  the  most  frequently  isolated
staphylococcal  species  in  humans  and  is  considered  the
most  clinically  relevant  CoNS  species  [17].  The  highest
percentage of coagulase-negative Staphylococcus (CoNS)
was isolated from wound samples (36%), followed by burn
samples  (20%)  and  urine  samples  (18%).  The  lowest
percentages  were  observed  in  ear  swabs  and  blood
samples,  with  14%  and  12%,  respectively.

3.2.  Antibiotic  Sensitivity  of  Coagulase-Negative
Staphylococcus

The  antibiotic  susceptibility  testing  of  coagulase-
negative  Staphylococcus  (CoNS)  isolates  showed  the
highest  resistance  rates  to  amoxiclav,  cefoxitin,
methicillin,  amoxicillin,  and  ceftriaxone  (100%).  The
isolates  also  exhibited  high  resistance  to  piperacillin
(96%), ceftazidime (96%), fusidic acid (76%), tobramycin
(68%),  tetracycline  (68%),  gentamicin  (66%),  and
azithromycin  (66%).  Resistance  to  vancomycin  was
observed  in  52%  of  the  isolates.  Resistance  levels  were
low  against  clindamycin  (46%),  lincomycin  (42%),
ciprofloxacin  (42%),  levofloxacin  (40%),  trimethoprim-
sulfamethoxazole  (38%),  rifampicin  (38%),  and
nitrofurantoin (18%). In comparison, the lowest resistance
was  observed  against  meropenem  (10%)  and
chloramphenicol (2%). The results also confirmed that the
study isolates were considered multidrug-resistant (MDR),
with 76% showing resistance to six classes of antibiotics:
penicillin,  cephalosporins,  macrolides,  glycopeptides,
tetracyclines,  and  fluoroquinolones.

An isolate is considered MDR when it shows resistance
to  at  least  three  classes  of  antibiotic  agents  [18].  This
virulent  characteristic,  i.e.,  its  ability  to  resist  multiple
classes of antibiotics simultaneously, makes the bacterium
one  of  the  most  intractable  pathogens  in  the  history  of
antibiotics  [19].  MDR  Staphylococcus  can  resist  various
agents through multiple mechanisms, such as altering the
target  site,  producing  deactivating  enzymes,  efflux
pumping, and decreasing the intracellular concentration of
antibiotics  [20].  These  mechanisms  often  arise  due  to
prolonged or improper antibiotic use by patients [21]. This

study  revealed  that  meropenem  is  a  highly  effective
antibiotic  against  multidrug-resistant  coagulase-negative
Staphylococcus.  Meropenem  acts  on  the  cell  wall  like
other  beta-lactam  antibiotics  but  differs  in  its  high
resistance to cephalosporinase or beta-lactamase enzymes
[22].

However,  chloramphenicol  is  the  most  effective
antibiotic,  exhibiting  the  highest  efficacy.  It  is  a  broad-
spectrum antibiotic that exerts its antibacterial effects by
inhibiting  bacterial  protein  synthesis  at  the  ribosomal
level. Its primary mechanism of action involves binding to
the  50S  ribosomal  subunit,  specifically  at  the  peptidyl
transferase  center,  to  prevent  the  formation  of  peptide
bonds between amino acids during translation, effectively
halting  polypeptide  chain  elongation.  This  inhibition
disrupts bacterial protein synthesis, ultimately leading to
bacteriostatic effects against most susceptible organisms
[23].  The  high  susceptibilities  recorded  against  these
antibiotics  could  be  due  to  the  reserved  use  of  those
antibiotics, mainly for resistant staphylococcal infections.
Thus,  last-resort  antibiotics  still  retain  high  activity
against  coagulase-negative  Staphylococcus  (CoNS)  and
may be used for empirical treatment of conditions, such as
suspected CoNS sepsis,  even though resistance to  these
antibiotics is gradually increasing [24]. The results showed
that  all  isolates  (100%)  were  methicillin-resistant
coagulase-negative Staphylococcus. There was a complete
concordance between phenotypic and genotypic results in
confirming  methicillin  resistance  in  this  study.  This  is
primarily  due  to  the  presence  of  the  mecA  gene,  which
encodes the PBP2a protein that has a low affinity for beta-
lactam antibiotics [25].

3.3. Biofilm Formation
The  results  of  the  microtiter  plate  (MTP)  assay

revealed  that  all  the  isolates  demonstrated  a  positive
ability  for  biofilm  formation.  Based  on  their  biofilm-
producing capacity, the isolates were classified into three
categories: 58% (n=29) exhibited strong biofilm formation,
30% (n=15)  displayed  moderate  biofilm  production,  and
12% (n=6) showed weak biofilm formation. These findings
highlight the varying degrees of biofilm production among
the  isolates,  which  may  have  implications  for  their
pathogenicity  and  persistence  in  clinical  settings.
Statistical  analysis  was  performed  to  determine  which
clinical  source  was  associated  with  the  highest  level  of
biofilm production and whether the observed differences
were  statistically  significant.  The  results  indicated  that
coagulase-negative Staphylococcus isolates from urine and
wound  sources  exhibited  significantly  higher  biofilm
production  compared  to  isolates  from  blood  and  ear
swabs.  Although biofilm production  in  burn  isolates  was
higher than in those from blood and ear swab samples, the
difference was not statistically significant (Table 3).

Isolates  of  Staphylococcus  haemolyticus  from  urine
and  wound  samples  showed  significantly  higher  biofilm
production than isolates from blood and ear swabs. Burn
isolates demonstrated elevated biofilm levels but without
statistical significance. This suggests that specific clinical
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Table 3. Presents a statistically significant difference in biofilm production among different sources (p < 0.05).

Comparison P-value Significance (p < 0.05)

Urine vs. Blood < 0.01 Significant
Wound vs. Blood < 0.01 Significant
Burn vs. Blood 0.07 Not Significant

Ear Swab vs. Blood 0.08 Not Significant
Urine vs. Wound 0.90 Not Significant
Urine vs. Burn 0.04 Significant

environments may favor biofilm formation due to nutrient
availability or local stress factors. Another study indicated
that  biofilm  production  was  most  prevalent  in  blood
samples (27.3%), followed by pus swabs (12.5%) and pus
aspirates  (16.7%).  Biofilm  development  is  strongly
associated  with  medical  device-related  infections,
including  contaminated  implants,  urinary  catheters,  and
prosthetic  valves  [26].  Biofilm  is  an  extracellular
polysaccharide layer that facilitates bacterial attachment
to surfaces and medical devices. S. haemolyticus isolates
capable  of  forming  biofilms  contribute  to  infections
associated with catheters and other medical devices [7]. S.
epidermidis-producing  biofilms  can  lead  to  bacteremia,
especially  in  cases  linked  to  catheter-associated  and
nosocomial  infections.  Biofilm  formation  by  S.
haemolyticus  is  a  complex  process  that  becomes  more
pronounced in the presence of antimicrobial agents [27].

3.4. Molecular Screening of mecA Gene
The  results  demonstrated  that  all  the  isolates  were

100%  positive  for  the  detection  of  the  mecA  gene  in
methicillin-resistant  coagulase-negative  Staphylococcus
isolates  by  using  Uniplex  PCR.  Methicillin  resistance
occurs  mainly  because  of  a  mutation  in  chromosome-
encoded  protein  (penicillin-binding  protein);
bacteriophage  transfers  this  mutation  among  CoNS
isolates  [28].  Methicillin-resistant  strains  have  always

exhibited  a  wide  number  of  virulence  factors  and
consequently show multi-drug resistance through different
mechanisms  [29].  In  this  study,  the  MRCoNS  strains
showed  100%  multi-drug  resistance,  which  is  in
agreement  with  the  findings  of  a  previous  study  [30].

The highest resistance rate of CoNS toward amoxiclav,
cefoxitin,  methicillin,  amoxicillin,  and  ceftriaxone  was
observed.  Methicillin  resistance  in  isolates  that  lack  the
mecA  gene  may  be  mediated  by  other  mechanisms  of
methicillin resistance, such as the presence of mecC and
mecB  genes  [31].  The  overproduction  of  β-lactamases,
along  with  the  emergence  of  methicillin  resistance,  has
been documented in approximately 80% of CoNS species.
This high prevalence significantly contributes to increased
morbidity and mortality in hospital settings, as CoNS are
major  pathogens  in  healthcare-associated  infections
(HAIs)  [24].

3.5. MLST Analysis
The molecular analysis identified five distinct sequence

types (STs) of Staphylococcus epidermidis, demonstrating
a  high  level  of  genotypic  diversity.  Notably,  all  isolates
were recorded in  Iraq for  the first  time,  as  presented in
Table  4  and  Fig.  (1).  ST89  was  initially  reported  in
Denmark in 1997 with ID 40259, with a global frequency
of 27 isolates. In the current study, this ST has been

Fig. (1). Shows the percentage distribution of Staphylococcus epidermidis isolates across Asia, highlighting regional variations. Notably,
Iraq shows a significant proportion, possibly due to hospital-acquired infections, antimicrobial resistance, or diagnostic differences.
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identified in Iraq with ID 46590. Similarly, ST23 was first
recorded in  Mexico  in  1996 with  ID 40147 and has  now
been  documented  in  Iraq  with  ID  46588.  ST59  was
originally detected in South Korea with ID 41234, and in
this  study,  it  has  been  identified  in  Iraq  with  ID  46587.
This sequence type exhibited the highest frequency in this
study,  with  a  global  occurrence  of  101  isolates.
Additionally, ST1183 was found to have the lowest global
frequency,  with  only  three  recorded  strains.  These
findings highlight the genetic diversity of  S. epidermidis
isolates  and  emphasize  the  importance  of  continued
molecular  surveillance  to  understand  the  epidemiology
and distribution of this opportunistic pathogen. Moreover,
there  is  a  need for  targeted public  health  measures  and
further research in Iraq. The Staphylococcus haemolyticus

isolates  analyzed  in  this  study  provide  valuable  insights
into  their  global  distribution  and  epidemiological
significance. Sequence type (ST) 24 was first recorded in
India in 2010 with ID 55, while in the current study, this
isolate was identified in Iraq with ID 240. Similarly, ST35
was initially reported in India in 2016 with ID 70 and has
now been detected  in  Iraq  with  ID 241.  ST109 was  first
identified in China in 2019 with ID 151, and in the present
study,  it  has  been  recorded  in  Iraq  with  ID  242,  with  a
frequency of two isolates. ST173 was initially reported in
Burma in 2023 with ID 238 and has now been recorded in
Iraq with ID 243. Likewise, ST146 was first documented in
Thailand  in  2021  with  ID  197,  and  in  the  current  study,
this isolate has been detected in Iraq with ID 244. Other
details of ST under study are listed in Table 4 and Fig. (2).

Fig. (2). Shows the percentage distribution of Staphylococcus haemolyticus isolates across Asia, highlighting their prevalence in various
countries. The green section represents the isolates recorded in Iraq, specifically in Ramadi, from the current study. This image presents a
comparative  analysis  of  the  geographical  spread  of  S.  haemolyticus,  emphasizing  the  newly  identified  isolates  in  Iraq  and  their
contribution to the regional distribution.

Table 4. Presents data on Staphylococcus epidermidis (1–5) and Staphylococcus haemolyticus (6–10) isolates,
detailing  their  sequence  types  (STs),  ID  profiles,  geographic  origin,  isolation  sources,  year  of  first  global
identification, study-specific identification numbers, and frequency of occurrence.

Isolates ST Methicillin
Susceptibility ID Profile Isolation Area First

Time
Source of
Isolation

First Isolation
Year in the

World

Special ID for
the Current

Study
Frequency

1. 89 *MRSE 40259 Denmark blood 1997 46590 27 isolates
2. 23 MRSE 40147 Mexico Blood 1996 46588 60 isolates
3. 59 MRSE 41234 South Korea Wound swab 2000 46587 101 isolates
4. 1183 MRSE 44665 South Africa CSF 46591 3 isolates
5. 35 MRSE 40165 Portugal Nasal swab 2000 46592 22 isolates
6. 24 *MRSH 55 India Wound 2010 240 2 isolates
7. 35 MRSH 70 India Wound 2016 241 2 isolates
8. 109 MRSH 151 China UTI 2019 242 2 isolates
9. 173 MRSH 238 Burma Wound 2023 243 2 isolates
10. 146 MRSH 197 Thailand Wound 2021 244 2 isolates

*MSRE: Methicillin Resistance S. epidermidis, *MSRH: Methicillin Resistance S. haemolyticus
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Alleles and sequence types (STs) were identified using
the  S.  epidermidis-specific  MLST  database  (https:
//pubmlst.  org/bigsdb?db  =pubmlst_  sepidermidis
_isolates&  page=profiles  &scheme  _id=4)  and  for  S.
haemolyticus  isolate,  using  its  corresponding  MLST
database  https:  //pubmlst.  org/bigsdb  ?db=pubmlst
_shaemolyticus _isolates &page= profiles &scheme _id=1).

The detection of various sequence types (STs) in Iraq
suggests  possible  intercontinental  transmission  or
convergent  evolution,  potentially  driven  by  selective
pressures in hospital environments. ST89 (from Denmark),
ST23 (from Mexico), and the rare ST1183 indicate global
dissemination  and  the  importance  of  monitoring
uncommon  STs  for  antimicrobial  resistance.  For
Staphylococcus  haemolyticus,  five  distinct  STs  were
identified,  namely  ST24  and  ST35  (from  India),  ST109
(from  China),  ST173  (from  Burma),  and  ST146  (from
Thailand),  indicating  regional  spread  within  Asia  and
broader  international  movement.  This  underscores  the
genetic  diversity  and  global  distribution  of  these
pathogens. The emergence of these sequence types in Iraq
may result from globalization, hospital transmission, and
antimicrobial  selective  pressures  [32].  The  presence  of
globally  distributed  STs  in  S.  epidermidis  and  S.
haemolyticus  suggests  that  healthcare-associated
infections (HAIs) influence their population structure. As
major opportunistic pathogens linked to bloodstream and
prosthetic  device  infections  with  multidrug  resistance,
molecular surveillance is essential [33]. The detection of
sequence  types  with  varying  global  frequencies  in  Iraq
highlights the need for continuous genetic monitoring to
track  bacterial  evolution,  antimicrobial  resistance,  and
transmission  pathways.  Using  MLST  databases  enabled
precise  classification  and  epidemiological  assessment.
Identifying  both  novel  and  known  S.  epidermidis  and  S.
haemolyticus  STs  reveals  their  genetic  diversity  and
clinical  significance.  Ongoing  molecular  surveillance  is
crucial  to  understand  their  distribution,  resistance
profiles,  and  pathogenic  potential,  supporting  effective
infection control strategies [34]. Another study indicated
that  MLST analysis  of  S.  epidermidis  identifies  high-risk
clones  linked  to  nosocomial  infections,  tracks  antibiotic-
resistant  strains,  and  guides  infection  control  and
antibiotic  therapy.  It  enhances  understanding  of  S.
epidermidis  epidemiology,  supporting  strategies  to
prevent  and  manage  infections  [35].

CONCLUSION
This  study  reveals  high  methicillin  resistance,

multidrug resistance (MDR), and strong biofilm formation
in  Staphylococcus  epidermidis  and  Staphylococcus
haemolyticus isolates from Anbar, Iraq. The identification
of diverse sequence types (STs), reported for the first time
in Iraq, highlights their genetic diversity and potential for
intercontinental transmission. The presence of the mecA
gene  in  all  MRCoNS  underscores  the  antimicrobial
resistance threat. These findings emphasize the need for
continuous  molecular  surveillance  to  track  bacterial
evolution  and  resistance,  supporting  effective  infection

control strategies and antibiotic stewardship in healthcare
settings.
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