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Abstract:

The  global  impact  of  severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2),  responsible  for  the  COVID-19  pandemic,  cannot  be
understated. Amidst the relentless focus on this viral adversary, we must not lose sight of an equally formidable challenge – the lurking threat of
bacterial coinfections that can exacerbate morbidity and mortality.

Various factors, including ICU admissions, age demographics, microbiota disturbances, and empirical antibiotic use, contribute to the specter of
bacterial coinfections. Respiratory tract coinfections, often featuring Streptococcus pneumoniae, precede bacteremia and urinary tract involvement.
However, the bacterial landscape in COVID-19 coinfections is a diverse tapestry with regional and institutional variations.

Unlike its viral counterparts,  COVID-19 exhibits a lower incidence of bacterial coinfection, underscoring the urgency of judicious antibiotic
administration to curb the looming threat of antimicrobial resistance. Pandemics have historically witnessed an upsurge in coinfection-related
morbidity and mortality.

This comprehensive review delves into the multifaceted realm of bacterial, viral, and fungal coinfections amidst the COVID-19 pandemic. We
scrutinize their impact on the respiratory and urinary tracts, blood, microbiota, and the ominous emergence of drug-resistant microorganisms. In
conclusion, we explore nuanced treatment strategies in the quest for effective pandemic management.
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1. INTRODUCTION

One of  the  current  century's  most  severe  pandemics  was
brought  on  by  SARS-CoV-2  [1,  2].  The  COVID-19,  severe
acute respiratory infections, and gastroenteritis are all brought
on  by  this  virus,  which  is  a  member  of  the  Coronaviridae
family, with a mortality rate of about 3-6% [3]. It has also been
reported that this virus, similar to SARS-CoV and MERS-CoV,
uses angiotensin-converting enzyme 2 (ACE2) as a receptor to
invade the target cell [3]. The infection ultimately contributes
to respiratory symptoms and lymphopenia, cytokine cascades,
and immune reactions in the target tissue, leading to extreme
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respiratory symptoms and impaired immune functions [3 - 5].
The  novel  SARS-CoV-2  emerged  from  Wuhan,  China,  in
December 2019 and is currently responsible for more than 544
million infections and 6.34 million deaths in 228 countries [6,
7].  ACE2  acts  as  a  receptor  for  the  SARS-CoV-2  virus  in
alveolar  epithelial  cells,  and  infection  with  this  virus  can
contribute  to  acute  respiratory  distress  syndrome  [8];
furthermore,  the  SARS-CoV-2  RNA  has  been  reported  in
human feces, indicating the presence of ACE2 receptors in the
intestinal epithelial cells [9 - 11]. Studies have also shown that
secondary  bacterial  infections,  particularly  Staphylococcus
pneumoniae, was the primary cause of mortality from bacterial
pneumonia in  the influenza pandemic,  occurred in  1918 [12,
13].  In  general,  secondary  bacterial  infections  have  been
documented to be a complication of viral respiratory diseases
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that  increase  the  severity  of  respiratory  infections  and
pneumonia  [14].  Due  to  the  severity  of  the  disease,  15%  of
patients  are  admitted  to  the  intensive  care  unit  (ICU),  which
provides  an  opportunity  for  bacterial  infections  [15].  If  it
occurs  24  hours  after  admission,  they  are  considered
community-acquired coinfections,  but  if  they occur 48 hours
after  admission,  they  are  called  hospital-acquired
superinfections  [16].

Furthermore,  researchers  have  found  that  common  viral
coinfections, such as influenza, rhinoviruses, and enteroviruses,
were  present  in  17.2%  of  cases.  Additionally,  bacterial
coinfections caused by both gram-positive and gram-negative
species,  like  Mycoplasma  pneumoniae,  were  identified  in
7.11% of cases. The most commonly isolated bacterial species
from ICU patients include Staphylococcus aureus, Legionella
pneumophila, Haemophilus spp., Klebsiella spp., Pseudomonas
aeruginosa, Chlamydia spp., Streptococcus pneumoniae, and
Acinetobacter baumannii [17].

Furthermore,  it  has  been  shown  that  1.3%  of  patients
admitted to ICU due to drug resistance to S. aureus, Klebsiella
pneumoniae,  A.  baumannii  were  susceptible  to  bacterial
superinfection [8,  18 -  22].  Additionally,  secondary bacterial
infections such as S. pneumoniae, Haemophilus influenzae, and
S. aureus, which are associated with influenza pandemics, have
been  illustrated  as  the  most  common  causes  of  11% to  35%
bacterial  coinfection  [14].  It  is  worth  noting  that  viral
infections can promote complementary bacterial infections due
to the host immune system's failure [23, 24]. Furthermore, the
evidence shows that concomitant bacterial infection occurred
in  COVID-19  hospitalized  patients.  In  these  cases,  an
enhancement in the levels of pro-inflammatory cytokines and
other biological markers associated with the disease indicates a
secondary bacterial infection, which is attributable to the host
immune  system  dysfunction  [24  -  29].  Immune  system
disorders  in  COVID-19  patients  can  also  assist  coinfection
occurrence with various opportunist bacteria [30].

Using mechanical ventilation as a supportive treatment for
COVID-19 patients can increase the risk of hospital-acquired
infections  caused  by  bacteria  likeEscherichia  coli,  K.
pneumoniae, P. aeruginosa, A. baumannii, and S. aureus [31].
According  to  several  studies,  macrophage  hyperactivity  has
been  implicated  as  the  cause  of  the  low  rate  of  bacterial
concomitant infection in COVID-19 patients [16, 32]. Another
study  showed  that  due  to  a  weakened  immune  system  and
reduced  type  I  interferons  (IFN),  bacterial  coinfection  is
common in  male  and female  COVID-19 patients  [33,  34].  It
should be noted that mechanisms such as reducing mucociliary
clearance,  cell  destruction  by  viral  enzymes,  the  release  of
planktonic bacteria from biofilms, and agitation of dysbiosis in
respiratory  tract  microbiome  and  gut  microbiota  are  also
involved  in  secondary  infection  with  bacteria  [10,  35].
Depending  on  the  type  of  virus  or  bacterial  species  and  the
extent  of  the  immune  system  response  to  the  pathogen,  the
various  molecular  pathways  contribute  to  each  of  the  above
modifications.  In  general,  bacterial  invasion  in  the  airways

occurs as a result of viral infections [36].

Furthermore, other upper respiratory tract viruses increase
the susceptibility of immortalized epithelial  cells  to bacterial
pathogens [38]. According to 80% of reported studies, the most
common cause of bacterial coinfection is lymphopenia [36]. In
this regard, coinfection can occur in the respiratory tract, the
bloodstream,  and  the  urinary  tract  [37].  Several  bacterial
infections  have  been  reported  concurrently  with  COVID-19.
However, studies have suggested that the rate of improvement
in  COVID-19  patients  with  secondary  bacterial  infections  is
dramatically  decreased,  particularly  when  admitted  to  ICU
[17].  In this  study,  we reviewed some medical  articles  about
COVID-19 that reported bacterial coinfection.

2.  BACTERIAL  COINFECTION  IN  OTHER  VIRAL
RESPIRATORY TRACT INFECTIONS

In a report by Novotny et al.,  adenovirus and respiratory
syncytial virus have been found to have enhanced intercellular
adhesion  molecule  1  (ICAM-1)  expression  in  primary
respiratory epithelial cells [38]. Also, owing to the propensity
of Type IV pili (T4P) of non-typeable H. influenzae (NTHI) to
the  ICAM-1  receptor,  this  expression  contributes  to  the
sensitivity  of  cells  expressing  this  receptor  to  bacterial
pathogens [38]. Besides, the ability of P. aeruginosa to adhere
to normal epithelial cells and cells affected by cystic fibrosis
increases  as  a  result  of  respiratory  syncytial  virus  infection
[35]. Moreover, dysregulation of pro-inflammatory cytokines
has  increased  cell  vulnerability  to  bacterial  coinfections
following  viral  infection.  For  example,  IFNs  stimulate  the
immune system and antiviral responses during viral infections;
however,  excessive  secretion  of  IFNs  can  result  in  the
destruction and damage to host cells [35, 39]. The production
of  anti-inflammatory  cytokines,  interleukins  (IL),  including
IL-10  and  IL-6  are  induced  by  interferons,  inhibiting  the
secretion  of  pro-inflammatory  cytokines  such  as  IL-17  and
IL-23,  which  constitute  innate  and  acquired  immunity  [35].
Additionally, macrophage, dendritic cells, natural killer cells’
activity  and  the  percentage  of  CD4+  and  CD8+  T-cells  are
decreased  by  IFNs,  which  interferes  with  the  clearance  of
bacterial  infections  [40  -  43]  (Fig.  1).

Despite  extensive  studies  on  viral  and  bacterial
coinfections, the issue of infectious coronaviruses is debatable.
On this basis, the human coronaviruses, including 229E, NL63,
OC43,  SARS-CoV-1,  MERS-CoV,  and  SARS-CoV-2,  have
been  reported  to  cause  pneumonia  in  addition  to  influenza
virus,  as  well  as  concurrent  bacterial  infections  and  extreme
respiratory symptoms [44 - 46].

Human  coronavirus  NL63  (HCoV-NL63)  has  been
reported to be one of the most significant viral pathogens in the
upper and lower respiratory tract [47 - 49]. Besides, Golda et
al.  have  demonstrated  that  HCoV-NL63-induced  infection
increases the susceptibility of virus-infected epithelial cells in
the  respiratory  tract  to  bacterial  pathogens  such  as  S.
Pneumoniae, which in turn exacerbates respiratory symptoms
[48].
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Fig. (1). SARS-CoV-2 infection and the effect of bacterial coinfection on its pathogenesis and disease severity.
(A). Infection with SARS-CoV-2 alone can lead to an increase in the level of immune cells in the lung alveoli and subsequently cause inflammation
through cytokine secretion. Also, during infection with SARS only clinical respiratory symptoms are mild.
(B) Coinfection of SARS-CoV-2 with respiratory pathogenic bacteria can enhance the migration of inflammatory cells (macrophages and neutrophils)
and increase the secretion of pro-inflammatory cytokines such as IL-10, IL-17, and IL-23 in alveoli, which lead to an aggravation of the disease
severity and tissue damage promotion in the alveoli. INFs increase the trapping of bacteria by PMNs, which promote inflammation. In this situation,
bacteria have a greater chance of reaching the bloodstream through damaged cells and capillary vessels and causing bacteremia.

In another study on SARS, Zahariadis et al. indicated that a
noticeable  percentage  of  patients  with  SARS  had  bacterial
coinfection with Chlamydophila Pneumoniae and Mycoplasma
Pneumoniae  [35].  Furthermore,  Alfaraj  et  al.  discovered
MERS-CoV coinfection  with  tuberculosis  in  two  cases  [50],
and  Wang  et  al.  illustrated  seven  patients  with  SARS-CoV-
related deaths and secondary bacterial infection [51].

Following  SARS-CoV  infection,  the  accumulation  of
macrophages  and  mononuclear  neutrophils  increases  in  the
body,  which  subsequently  increases  and  decreases  Th1  cells
and NK cells, respectively [52, 53]. It also leads to the increase
of cytokines IL-6, IL-1, IFN-γ, TGF-β, IL-12, IL-8, CXCL9,
CXCL10 and CCL2 [52, 54, 55]. It is worth mentioning that in
MERS-CoV  infection,  the  cytokines  IFN-β  and  IP-10  were
significantly  lower,  while  the  level  of  IL-10  was  increased.
Also, CD4+ T cells, Th1 cells and Th2 cells were significantly
decreased in MERS-CoV infection [56].

Based  on  the  studies  in  SARS-CoV-2  infection,  T
regulatory cells (Treg) and CD4+ T cells decreased. Th1 cells

were  considerably  reduced,  while  Th17  and  Tfh  cells  were
elevated. In the group with moderate symptoms compared to
the seriously ill patients, there were more DCs, macrophages,
CD4+ T cells, and TGF-+CD28 naive CD8+ T cells [57 - 59].

The body releases IL-10, IL-7, IL-2, MCP1, IP10, G-CSF,
MIP1,  and TNF-α in  response  to  COVID-19.3  In  contrast  to
SARS-CoV  infection,  SARS-CoV-2  infection  also  led  to  an
increase in the release of anti-inflammatory Th2 cytokines such
IL-4 and IL-10 [60, 61].

3. BACTERIAL COINFECTION IN COVID-19

Immunodeficient  individuals  have  been  documented  as
more vulnerable to COVID-19 and are more likely to develop
secondary bacterial infections than other patients. The evidence
suggests  that  hospitalization  and  consequent  antibiotic
resistance in some bacteria may cause secondary infections [25
- 27, 35].

About 50% of mortality during the COVID-19 pandemic is
associated  with  secondary  bacterial  infections  and  often
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contribute to acute symptoms in COVID-19 patients [18, 62].
As mentioned, the ICU hospitalization of COVID-19 patients
promotes  coinfection  frequency,  where,  due  to  antibiotic
resistance,  1.3%  of  cases  developed  bacterial  superinfection
[17]. It has been illustrated that the lung cells destroyed during
SARS-CoV-2  infection  contribute  to  an  enhancement  in  the
propensity and colonization of bacteria [63].

Furthermore,  the  immune  response  rate  in  SARS-CoV-2
infection is different from the response rate in pneumonia due
to  concomitant  bacterial-viral  disease.  Given  the  severity  of
clinical  manifestations  of  COVID-19,  which  enhances
coinfection,  it  facilitates  the  attachment  and  invasion  of
bacterial  pathogens  and  eventually  increases  tissue  damage
[64].  Furthermore,  airway  dysfunction,  cytopathology,  and
tissue disruption have been shown to occur during both single
SARS-CoV-2  infection  and  bacterial  coinfection  [64].  This
may  promote  the  systemic  dissemination  of  the  virus,  the
pathogenicity  of  concomitant  bacterial  infections,  blood
infections, and sepsis [64]. Besides, epithelial cell disorders by
respiratory  pathogens  have  been  documented  to  increase
following rhino and influenza virus infections [65]. Moreover,
it has been reported that structural and non-structural proteins
of the SARS-CoV-2 inhibit the response of IFNs, which in turn
predisposes the host to secondary bacterial infections [66, 67].
Proteins encoded by the SARS-CoV-2, including NSP1, ORF6,
and N, inhibit IFN-related signaling pathways. It has also been
reported that bacterial coinfections can disrupt host signaling
pathways,  increasing SARS-CoV-2 and exacerbating clinical
symptoms.  For  instance,  inhibition  of  NF-κB-associated

signaling  responses  by  K.  pneumoniae  leads  to  disruption  of
the host antiviral response [68]. Since the ACE2 receptor is an
IFN-stimulated  gene,  the  secreted  IFNs  during  bacterial
infections  promote  SARS-CoV-2  infection  [69].

A study by Goncalves Mendes Neto et al. has reported that
57% of COVID-19 patients became coinfected with E. coli and
E. cloacae, causing urinary tract infections (UTI). Furthermore,
asymptomatic  bacteriuria  and  lower  UTI  to  acute
pyelonephritis  have  been  illustrated  in  these  patients  [70].

It has been shown that the intestinal-pulmonary axis plays
a significant function in preventing bacterial pneumonia [71].
Also, in COVID-19 sufferers, intestinal cells are damaged and
causing gastrointestinal symptoms and eventually stimulating
the  immune  defense  [72,  73].  In  this  regard,  during  severe
infections,  the  intestinal  microbiota  can  contribute  to  host
susceptibility  to  secondary  bacterial  infections  and
vulnerability  to  concomitant  infections  [64].

Concurrent bacterial infections have been reported in other
viral respiratory diseases, such as influenza H1N1 and H3N2,
which  cause  problems  in  diagnosis  and  treatment  and  may
eventually  be  associated  with  high  morbidity  and  mortality
[74]. Typically, after the virus spreads and induces infection, it
disturbs  the  respiratory  system  both  functionally  and
histologically [75]. These diseases range from mild to severe
based on the type of virus infection; they include alterations in
mucosal secretion, cell death, hyperplasia, reduced alveolar gas
exchange,  and  compromised  surfactant  secretion  [75].  The
cited  references  are  summarized  in  Table  1.

Table 1. The cited references for bacterial coinfection in COVID-19.

Study Focus References
Immunodeficiency and secondary bacterial infections [25 - 27, 35]
Mortality associated with secondary bacterial infections [18, 62]
ICU hospitalization and bacterial superinfection [17]
Lung tissue damage and bacterial colonization [63]
Immune response, coinfection, and tissue damage [64]
Epithelial cell disorders in respiratory infections [65]
SARS-CoV-2 proteins and IFN response [66, 67]
Bacterial coinfections and disruption of host response [68]
ACE2 receptor and IFN-stimulated gene [69]
E. coli and E. cloacae coinfections in COVID-19 patients [70]
Intestinal-pulmonary axis and bacterial pneumonia [71]
Intestinal cell damage, gastrointestinal symptoms, and immune defense [72, 73]
Concurrent bacterial infections in other viral respiratory diseases [74]

Table 2. The cited references for respiratory tract and bacterial coinfection in COVID-19.

Study Focus References
Bronchiectasis and NTM infection as predisposing factors [76]
Bacterial opportunity due to inflammation and lung tissue destruction [77]
Mucosal/epithelial destruction and infection [78]
Mechanical ventilation and coinfection risk [79]
Bacteria responsible for ventilator-associated pneumonia [80]
Bacterial coinfection in Wuhan COVID-19 patients [81]
Comparison of community-acquired and hospital-acquired coinfections [16, 82]
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Study Focus References
S. pneumoniae coinfection and vaccine recommendations [83]
S. aureus and necrotizing pneumonia in COVID-19 [84]
Diagnosis of bacterial pneumonia with BBAL [85]
Antibiotics for gram-positive and gram-negative bacteria [86]
Use of vancomycin in COVID-19 [87]

4.  RESPIRATORY  TRACT  AND  BACTERIAL
COINFECTION IN COVID-19

Bronchiectasis and previous nontuberculous mycobacteria
(NTM)  infection  predispose  the  affected  individuals  to
concurrent  bacterial  and viral  infections  [76].  In  COVID-19,
bacteria get a chance to impair their host due to inflammatory
reactions and the destruction of lung tissue [77]. Another factor
predisposing  to  secondary  bacterial  infection  is
mucosal/epithelial destruction [78]. Mechanical ventilation is
the  most  critical  risk  factor  for  the  respiratory  tract’s
coinfection  with  S.  aureus,  P.  aeruginosa,  Klebsiella  spp.,
Enterobacter spp., and E. coli in intensive care units [79]. On
this basis, the average time of bacterial coinfection emergence
after positive results of SARS-CoV-2 infection is six days [79].
Bacteria  responsible  for  causing  ventilator-associated
pneumonia [80] consist of oropharyngeal microbiota in the first
4-5 days of  hospitalization,  while  after  five  days,  multidrug-
resistant bacteria prevail [31]. The mortality rate increases by
about 60% when these bacteria are resistant to multiple drugs,
so  to  reduce  the  risk  of  ventilator-associated  pneumonia  in
COVID-19  patients,  the  World  Health  Organization  [6]
recommends  that  instead  of  nasal  intubation,  oral  intubation
must  be  used  with  the  patient’s  head  at  an  angle  of  30°–45°
[31].

A  study  from  Wuhan,  China,  has  shown  bacterial
coinfection  with  common  respiratory  bacteria  such  as
Mycoplasma  pneumoniae,  Bordetella  pertussis,  and  P.
aeruginosa;  among  these,  M.  pneumoniae  was  sensitive  to
moxifloxacin [81]. A study from Spain showed that the rate of
community-acquired coinfection is lower than that of hospital-
acquired superinfections; P. aeruginosa was the most isolated
species  among  hospital-acquired  superinfections,  which  is
consistent with the study reported from Italy [16, 82]. Another
study  that  reported  the  highest  coinfection  rate  with  S.
pneumoniae,  suggested  pneumococcal  conjugate  and
polysaccharide  vaccines  to  prevent  bacterial  pneumonia  in
COVID-19  patients  [83].

Different bacteria have been reported from various studies
in  COVID-19  patients.  For  instance,  S.  aureus  is  one  of  the
most reported bacteria from these patients that causes severe
necrotizing pneumonia due to toxins such as Panton-Valentine
leucocidin, prompting the prescription of antibiotics with anti-
toxin properties, such as linezolid or clindamycin [84].

Blind bronchoalveolar lavage (BBAL) is the best sample
for diagnosing bacterial pneumonia in critically ill COVID-19
patients  as  it  reduces  the  risk  of  contamination  and does  not
require bronchoscopy [85].

Although antibiotics active against gram-positive bacteria
effectively  treat  secondary  bacterial  pneumonia  in  influenza
patients, the antibiotics active against gram-negative bacteria

are  more  useful  for  parainfluenza  virus  and  coronavirus
infections  [86].  It  is  worth  noting  that  vancomycin  is  not
approved to treat  bacterial  pneumonia in COVID-19 patients
[87]. The cited references are summarized in Table 2.

5. BACTEREMIA IN COVID-19

Coagulase-negative Staphylococcus spp., Corynebacterium
spp., Bacillus spp., and Micrococcus spp. are usually isolated
from blood cultures of COVID-19 patients; still, it should be
noted that these isolated bacteria may be the normal flora of the
skin [88]. However, in infected cases, bacteremia is caused by
E.  coli,  S.  aureus,  K.  pneumoniae,  and Enterobacter cloacae
[88].  Due  to  some  diseases'  endemicity,  COVID-19  and
feverish  bacteremia  coinfection  in  some  areas  may  cause
problems in diagnosis; in this regard, coinfection with brucella
and  COVID-19  reported  by  Saudi  Arabian  investigators  has
been successfully treated with the combination of doxycycline
and rifampin [89].

Furthermore,  some  diagnostic  factors,  such  as
procalcitonin  level  among  COVID-19  patients  are  low  and
indicate that bacterial coinfection is rare in these patients [88];
however, this factor alone is insufficient for diagnosis [90]. In
general, bacterial infection has higher white blood cell (WBC)
and neutrophil counts and a more elevated level of C-reactive
protein  than  SARS-CoV-2  infection  [91,  92].  Bacteremia  in
other  viral  infections  has  been  reported  to  be  very  low,
although most of the lethal cases were positive for bacteremia
[88].

6. VIRAL COINFECTION IN COVID-19 PATIENTS

Researches show that COVID-19 coinfections are common
in  patients  infected  with  blood-borne  viruses  such  as  human
immunodeficiency  virus  (HIV)  or  hepatitis  C  virus  (HCV),
with respiratory viruses having the lowest rate of coinfection.
More research is needed to determine the incidence rate of viral
coinfection  in  COVID-19  patients  due  to  the  prevalence  of
influenza virus or RSV in society. Another significant feature
that  should  be  studied  is  their  association  with  the  patient's
morbidity  and  death.  In  summary,  more  research  into  viral
coinfection with SARS-CoV-2 is critical [93].

Patients  with  viral  infections  such  as  influenza,  severe
acute respiratory syndrome (SARS) in 2002, and Middle East
respiratory syndrome (MERS) in 2012 have also been reported
to  be  susceptible  to  concomitant  bacterial  infections;  for
example,  in  2009  pandemic  caused  by  the  H1N1  influenza
virus,  30-55%  of  the  mortality  was  attributed  to  bacterial
pneumonia  [37].  Moreover,  researchers  have  discovered  that
common viral coinfections such as influenza, rhinoviruses, and
enteroviruses  were  involved  in  17.2%  of  cases,  and  gram-
positive  and  gram-negative  species  causing  bacterial
coinfections  like  M.  pneumoniae,  have  been  identified  in

(Table 2) contd.....
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7.11%  of  cases  [94].

The  highly  variable  character  of  SARS-CoV-2  itself,  as
well as a lack of knowledge about host-pathogen interactions,
made  it  difficult  to  develop  efficacious  remedies  for  the
sickness.  Viral  coinfection  in  COVID-19  patients  may
complicate the patients' recovery from the illness; therefore, the
interaction  of  various  viruses  with  SARS-CoV-2,  as  well  as
their synergistic influence on illness clinical symptoms, should
be  studied  [93].  In  Wuhan,  5.8  percent  of  confirmed
COVID-19  patients  were  infected  with  different  kinds  of
respiratory  viruses  as  well.  COVID-19  coinfections  can  be
brought  on  by  the  majority  of  respiratory  viruses,  including
respiratory  syncytial  virus,  human  metapneumovirus,  and
rhinovirus,  and  having  information  about  these  coinfections
can be useful in applying antiviral  therapy. Patients with co-
infections may respond differently to therapy than those with
solely  COVID-19  infection.  It  is  also  thought  that  the
interaction  of  COVID-19  with  respiratory  viruses  may
exacerbate the illness severity, which is critical for vulnerable
individuals,  such  as  immunodeficient  or  immunosuppressed
patients [93].

When  compared  to  single  infections,  coinfections  may
result  in  changes  in  pathogen  transmission,  development  of
clinical  symptoms,  and  the  unfavorable  consequences
associated  with  any  particular  infection,  which  ultimately
impacts the management of infectious illnesses. In the lack of
appropriate data,  the failure of standard approaches to detect
coinfection might lead to underdiagnosis of coinfections [94,
95]. The cited references are summarized in Table 3.

Table  3.  The  cited  references  for  viral  coinfection  in
COVID-19  patients.

Study Focus References
Viral coinfections in COVID-19 patients [93]
Bacterial pneumonia in SARS. MERS, and H1N1
influenza virus

[37]

Common viral coinfections and bacterial coinfections [94]
Impact of coinfections on pathogen transmission and
clinical symptoms

[95]

7. FUNGAL COINFECTION IN COVID-19

Despite having a significant influence on human morbidity
and mortality, fungi are still underappreciated for their negative
effects  on  human health.  The majority  of  fungi  are  naturally
members  of  the  human  microbiome;  however,  some  are
opportunistic pathogens because they may cause serious illness
in  immunocompromised  hosts.  In  healthy  individuals,  the
opportunistic pathogens cause superficial, mild, and localized
illnesses.  However,  immune-suppressive  diseases  such  as
diabetes and lung disease increase mortality and cause systemic
morbidity [96].

A  noticeable  percentage  of  COVID-19  patients  become
severely  sick  and  require  ICU  hospitalization,  and  these
patients  are  more  likely  to  develop  fungal  infections  [97].
Severe COVID-19 is linked to immunological dysregulation,
impacting  both  T-helper  cell  2  (Th2)  and  Th1  responses,
including  the  cytokine  release  syndrome,  which  promotes
pulmonary microbial growth and infection [98]. Severe patients

with  COVID-19  have  enhanced  levels  of  pro-inflammatory
(IL-1,  IL-2,  IL-6)  and  anti-inflammatory  (IL-4,  IL-10)
cytokines. The likelihood of developing major fungi infections
is increased by the mentioned clinical state [99].

According to research, SARS-CoV and SARS-CoV-2 are
members  of  the  same  species  and  have  similar  biology  and
clinical features. Moreover, literature shows that the prevalence
rate of fungal infection in SARS patients was 14.8-27 percent,
which  was  the  leading  cause  of  mortality  in  SARS  patients.
However, fungal infection swab test was untended at the onset
of the SARS-CoV-2 pandemic [100].  Fungal coinfection can
aggravate the COVID-19 patients’ situation [101]. Some of the
fungal  pathogens  observed  in  severe  COVID-19  patients  are
Aspergillus, Candida, Mucor and Cryptococcus [100].

7.1. Invasive Pulmonary Aspergillosis (IPA)

IPA is a well-known consequence in immunocompromised
patients,  yet  50% of the incidences occur in individuals who
are  frequently  non-neutropenic  when  brought  to  the  ICU.
Severe influenza is a recognized risk factor for developing IPA
in these people. The disturbance of the respiratory epithelium,
as  well  as  defective  mucociliary  clearance  and  local
immunological impairment,  are important pathophysiological
aspects in the development of IPA [99].

First-line  therapy  options  for  IPA  include  voriconazole,
posaconazole, and isavuconazole. Echinocandins or nebulized
amphotericin  B  in  conjunction  with  anti-mold  azoles  are
potential  treatment  options  [99]

7.2. Invasive Candidiasis

The risk of  infection with Candida  species  may increase
significantly  in  severe  COVID-19  patients  who  have  more
opportunities  to  be  treated  with  broad-spectrum antibacterial
drugs  or  in  patients  with  immune  impairment  factors  [100].
Critically  ill  COVID-19  patients  are  exposed  to  additional
fungal  infections  such  as  Candida  species  and  Pneumocystis
jirovecii. All of the risk factors for developing candidemia in a
critically ill patient are present in COVID-19 patients admitted
to  the  ICU,  including  mechanical  ventilation,  parenteral
nutrition,  broad-spectrum  anti-bacterial  treatment,  older  age,
comorbidities, lymphopenia, corti-costeroids, and so on [99].

7.3. Invasive Mucormycosis

Mucormycosis is more common in COVID-19 individuals
who  have  had  trauma,  diabetes,  glucocorticoids  usage,
hemopoietic  malignancy,  persistent  neutropenia,  allogeneic
hematopoietic stem cell transplantation (allo-HSCT), or solid
organ transplantation (SOT). It recommends thorough surgical
treatment of mucormycosis as soon as feasible, in addition to
systemic  antifungal  therapy;  amphotericin  B  lipid  complex,
liposomal Amphotericin B, and posaconazole oral suspension
are  used  as  first-line  antifungal  monotherapy,  whereas
isavuconazole is  strongly recommended as salvage treatment
[100].  Due  to  the  nonspecific  nature  of  the  pulmonary  and
disseminated mucormycosis clinical signs, which may overlap
with  those  of  COVID-19,  the  diagnosis  of  COVID-19-
associated mucormycosis is challenging. In addition, a number
of Mucorales species, the most common of which is Rhizopus
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arrhizus, are responsible for mucormycosis, some of which are
poorly sensitive to antifungal treatment [101].

7.4. Invasive Cryptococcosis

COVID-19  Cryptococcosis,  which  mostly  manifests  as
meningoencephalitis,  affects  people  with  human
immunodeficiency  virus  (HIV)  infection  and  CD4  T
lymphocyte  count  less  than  200  [100].

Additionally, post-influenza coinfection with Cryptococcus
has been linked to decreased IFN- γ levels. As a result, IFN- γ
treatment has been shown to be helpful as an adjuvant therapy
in  patients  with  chronic  granulomatous  illness  who  are
undergoing  transplantation;  however,  its  favorable  effects
during fungal  coinfections  are  yet  unknown [102].  The cited

references are summarized in Table 4.

The complete list  of microorganisms causing coinfection
with SARS-CoV-2 is summarized in Table 5.

8. THERAPEUTIC APPROACH

Given the SARS-CoV-2 outbreak and the use of antibiotics
in  patients  admitted  to  the  ICU,  the  spread  of  multi  drug
resistant  (MDR)  bacterial  strains  has  been  documented  in
healthcare systems. Therefore,  to avoid the development and
increase  of  MDR  strain,  antibiotic  therapy  of  patients  with
COVID-19 should be interrupted in the case of mild bacterial
infection  and  is  recommended  only  in  patients  with  severe
respiratory symptoms [103, 104].

Table 4. The cited references for fungal coinfection in COVID-19.

Study Focus References
Fungal Coinfection in COVID-19 [99 - 101]
Invasive Pulmonary Aspergillosis (IPA) [99]
Invasive Candidiasis828 [99, 100]
Invasive Mucormycosis [100, 102]
Invasive Cryptococcosis [100, 102]

Table 5. Microorganisms causing coinfection with SARS-CoV-2.

Coinfection Examples References

Bacteria

Staphylococcus pneumoniae [17]
Haemophilus influenzae [14]
Staphylococcus aureus [31]

Escherichia coli [31]
Klebsiella pneumoniae [31]

Pseudomonas aeruginosa [31]
Acinetobacter baumannii [31]

Chlamydophila Pneumoniae [35]
Pseudomonas aeruginosa [79]
Mycoplasma Pneumoniae [35]

Bordetella pertussis [81]
Enterobacter spp. [79]

Enterobacter cloacae [88]

Virus

Human rhinovirus [95]
Human metapneumovirus [95]

Respiratory Syncytial Virus (RSV) [95]
Parainfluenza viruses [95]

Influenza virus [95]
Adenovirus [95]

Human immunodeficiency virus [95]
Hepatitis B virus [95]

Dengue viru [95]
Cytomegalovirus [95]
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Coinfection Examples References

Fungi

Aspergillosis fumigatus [100, 102, 107]
Candida albicans [100, 102, 108]
Candida glabrata [109]
Rhizopus oryzae [100, 102, 110]

Mucor [110]
Cryptococcus neoformans [111]

Cryptococcus gattii [111]

Additionally, research indicates a very large percentage of
patients  with  SARS-CoV-2  have  been  treated  with  a  wide
variety of antibiotics, such as third-generation cephalosporins,
quinolones,  and  carbapenems.  In  this  respect,  it  has  a
significant role in considering the local epidemiology of drug
resistance, its influence on the patient, and the assessment of
antibiotic side effects such as diarrhea. Treatment with a wide
variety of antibiotics, mainly acquired nosocomial infections,
has  also  been  reported  to  have  a  limited  impact  due  to
bacteria’s resistance to at least one class of antibiotics. Besides,
a lack of adequate care for sepsis can contribute to promoted
mortality [105, 106].

Since steroid levels are elevated in concomitant bacterial
infections  and  given  the  anti-inflammatory  activity  of
glucocorticoids,  steroids  prevent  the  cytokine  storm's
progression and subsequently control the host immune system.
It  is  worth  mentioning that  in  patients  suspected  of  bacterial
coinfection,  oral  antibiotics  have  fewer  side  effects  than
intravenous  antibiotics  [91].

CONCLUSION

According  to  present  review,  coinfections  have  a
significant  role  during  SARS-CoV-2  infection.  For  example,
chronic  obstructive pulmonary disease (COPD) is  one of  the
chronic conditions associated with this sickness; these patients
may  be  colonized  by  bacterial  pathogens  during  the  stable
phase  of  the  illness,  thereby  resulting  in  the  host’s
susceptibility to SARS-CoV-2 infection. In general, there are
three  different  forms  of  SARS-CoV-2  bacterial  infections,
including:  1)  SARS-CoV-2  infection  secondary  to  bacterial
infection, 2) coinfection and bacterial-viral pneumonia, and 3)
secondary bacterial “superinfection” after contamination with
SARS-CoV-2.

Consequently,  the  identification  of  bacterial  coinfections
during COVID-19 is critical. Besides, acute respiratory distress
syndrome  (ARDS)  is  a  clinical  feature  of  COVID-19  that
increases  nosocomial  pneumonia  risk.  Moreover,  other  viral
and  fungal  coinfections  have  an  impact  on  the  disease
symptoms,  severity  and  mortality.  It  has  been  shown  that  a
wide range of pathogens, such as their antimicrobial resistance
profiles and MDR bacteria, can be quickly identified using the
Next-Generation  Sequencing  (NGS)  metagenomic  method.
Also,  the  recognition  of  molecular  pathway  disorders  due  to
simultaneous bacterial and SARS-CoV-2 infection leads to the
development  of  new  effective  drugs  and  therapeutic
interventions  that  provide  appropriate  immunity  during
simultaneous  bacterial  and  viral  coinfections.

In  general,  compared  to  other  viral  diseases,  the  rate  of
concurrent bacterial infection in COVID-19 disease is meagre,
revealing the  importance of  antibiotic  stewardship  to  control

the emergence of drug resistance during the pandemic. On this
basis, it leads to the facilitation of hospitalization procedures
and treatment.

LIST OF ABBREVIATIONS

SARS-CoV-2 = Severe Acute Respiratory Syndrome Coronavirus 2

ACE2 = Angiotensin-converting Enzyme 2

HCoV-NL63 = Human Coronavirus NL63
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