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Abstract:

Introduction:

Urgent surveillance is required to provide the needed information for the containment of multidrug-resistant (MDR) Enterobacteriaceae. The
objective was to examine the antibiotic-resistant patterns among the clinically isolated Enterobacter species and Klebsiella pneumonia from the
outpatient department of the University of Cape Coast from 2014 to 2020.

Methodology:

The cultured isolates were Gram-stained for morphological and biochemical tests. Antibiotic susceptibility tests for the K. pneumonia and
Enterobacter spp were done using the modified Kirby-Bauer diffusion technique. A double-disk synergy antibiotic test using cefotaxime,
amoxicillin/clavulanic acid and ceftazidime antibiotic test was used to identify extended-spectrum beta-lactase (ESBL) and MDR among the
isolates. The network of interactions between bacteria isolates and resistant types and the pattern of interaction of K. pneumonia (in the resistant-10
group) and Enterobacter spp (resistant-12) and the various antibiotics tested was performed using Cytoscape version 3.8.2 software. The data are
presented in percentage and statistical significance between MDR and extensively drug-resistant (XDR) compared with Chi-square test.

Results:

K. pneumonia formed a clustering network with other bacteria isolates around resistant type 10 (resistant-10) and Enterobacter spp around resistant
type 12 (resistant-12). The interactions (edges) of bacteria isolates and resistant types (nodes) were unique for Staphylococcus saprophyticus with
Proteus mirabilis which exhibited two patterns of interactions (resistant-10 and resistant-12), connecting the two resistant types among the bacteria
isolates. The interactive network patterns of Enterobacter spp and the various antibiotics were different from the interaction patterns for K.
pneumonia. The K. pneumonia isolates were highly resistant to cefuroxime 2/3 (66.67%) and ampicillin 2/3 (66.67%) in the year 2020.
Enterobacter spp on the other hand were highly resistant to tetracycline 16/20 (80.00%) in 2014 and ceftriaxone 5/9 (55.56%), levofloxacin 5/9
(55.56%), ceftazidime 5/9 (55.56%) and gentamycin 5/9 (55.56%) in 2020. Chi-square analysis showed a highly significant difference of x2 =
11.87, p=0.0006 and %2 = 7.789, p=0.0053 between MDR and XDR Enterobacter spp isolates in 2014 and 2020, respectively.

Conclusion:

Early detection, constant monitoring and control practices and policies that prevent the misuse or overuse of these antibiotics are required to slow
down the rapid development of resistance fo Enterobacter spp and K. pneumonia in Cape Coast.

Keywords: Enterobacteriaceae, Enterobacter species, Klebsiella pneumonia, Multiple drug resistance, Extended drug resistance, Extended-
spectrum B-lactamases, Carbapenem-resistant Enterobacteriaceae.
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1. INTRODUCTION increased resistance of Enterobacteriaceae to fluoroquino-

lones, aminoglycosides, carbapenems, monobactam, cephal-
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¢ emergence of multiple antibiotic-resistant Entero osporins and extended-spectrum penicillins limits the current

bacteriaceae is a global threat to health and security [1, 2]. The
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antibiotic treatment options [3, 4]. The Enterobacter species
and Klebsiella pneumonia are the most frequently reported
pathogenic Enterobacteriaceae cases in community-acquired
and nosocomial infections [5 - 7]. These pathogens cause a
wide range of human infections including uropathogenic
complications [8, 9].

Extended-spectrum [-lactamases (ESBLs) Enterobacter
spp and K. pneumonia infections have become a serious
clinical issue in many global communities including Ghana [10
- 14]. The high morbidity and mortality associated with
pathogenic bacteria infections have been linked to the
extensive emergence of antibiotic resistance [15, 16]. This
trend is, however, alarming as the resistance mechanisms have
been associated with AmpC, blaCTX-M, blaTEM and blaSHV
genes carried by the pathogens [17, 18]. Most of these mediate
resistance through plasmid transfer between pathogens [19].
Thus, antibiotic-sensitive pathogens can acquire resistance by
obtaining resistance-encoded genes without antibiotic exposure
[20]. The extensive antibiotic resistance among clinically
isolated Enterobacter spp and K. pneumonia complicates the
choice of appropriate antibiotics for treatment [21 - 23].

Antibiotic resistance (AMR) has been predicted to be the
greatest problem facing low and middle-income countries [24 -
27]. However, antibiotic stewardship and appropriate policy
direction on antibiotic usage to prevent complete antibiotic
failure is hindered by limited data on the aetiology and
susceptibility patterns of clinical isolates from these countries
[24, 26]. The spreading of carbapenem-resistant
Enterobacteriaceae (CRE) threatens the treatment of
multidrug-resistant (MDR) Enterobacteriaceae with the latest
carbapenems such as meropenem, imipenem, and ertapenem
[28 - 30]. Currently, there is no new antimicrobial agent to
forestall the unsatisfactory management of CRE [31, 32]. This
requires urgent surveillance in low- and middle-income
countries to provide the needed data for the containment of
AMR [25, 27].

A recent study on ESBL-producing Enterobacteriaceae in
Ghana reported a 49.3% prevalence with 17% being resistant to
two or more aminoglycosides, fluoroquinolones, sulfonamide,
and carbapenems antibiotics and 3.2% non-ESBL producers
[33]. A similar study in other parts of Ghana had also reported
25.9% of blaTEM, 28.8% blaSHV, 26.6% blaCTX-M, 2.16%
blaOXA-48 and 0.72% blaNDM among Klebsiella spp with
ESBL, AmpC f-lactamase (AmpC), and carbapenemase
resistance [34]. Little is known about the Enterobacter spp
isolated from clinical samples and their antibiotic resistance
mechanisms [35]. Currently, there is no study in Ghana that has
analyzed the annual trends and prevalence of antibiotic
resistance among clinical isolates of Enterobacter spp and K.
pneumonia infections. The objective, was to examine the
antibiotic-resistant patterns among clinically isolated
Enterobacter spp and K. pneumonia from the outpatient
department of the University of Cape Coast hospital from 2014
to 2020.
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2. MATERIALS AND METHODS

2.1. Study Area

K. pneumoniae and Enterobacter spp isolate from 2014 to
2020 at the University of Cape Coast hospital in the Central
region of Ghana were evaluated for their antibiotic resistance
patterns. The University hospital provides health services to
students, University staff and the surrounding communities.
The hospital is about 160 meters from the shores of the Gulf of
Guinea and is located close to the main entrance of the
University campus.

2.2. Bacteria Isolation and Identification of Pathogens

Patients referred to the Microbiology Laboratory for
diagnosis and isolation of bacterial infection had their samples
cultured using Blood agar (Sigma-Aldrich) and MacConkey
agar (Sigma-Aldrich) and incubated at 37°C overnight. The
morphological characteristics of the bacteria isolates were
performed using macroscopic and microscopic Gram staining
examinations. Biochemical identification of bacteria isolates
was performed by culturing the isolates on Endo agar (Sigma-
Aldrich), MacConkey broth (Sigma-Aldrich), and Simmons
citrate agar (Sigma-Aldrich) selective culture media. The
isolates were characterized using catalase, coagulase, oxidase,
sugar fermentation, indole, citrate utilization, urease
production, and motility tests with E. coli O157 as a control.

2.3. Antibiotic Susceptibility Test (AST)

Antibiotic susceptibility test (AST) was performed using
Mueller-Hinton agar antibiotic diffusion technique (Kirby-
Bauer NCCLS modified disc diffusion technique) as previously
described [36]. The pure bacteria colonies were emulsified in
normal saline and compared with 0.5 McFarland solution.
Ampicillin, Gentamicin, Cotrimoxazole, Cefuroxime,
Erythromycin, Amikacin, amoxicillin/clavulanic  acid,
cefuroxime, cefotaxime, ceftazidime, imipenem, Cefixime,
Cefotaxime, Penicillin, Cloxacillin, ertapenem, meropenem,
tetracycline, trimethoprim-sulfamethoxazole, gentamicin,
nalidixic acid, ciprofloxacin, chloramphenicol, aztreonam,
piperacillin/tazobactam, fosfomycin, and colistin antibiotic
susceptibilities were tested.

2.4. Detection and Confirmation of Extended-spectrum
Beta-lactamase (ESBL)

ESBLs resistance K. pneumoniae and Enterobacter spp
isolates were diagnosed using the double-disk synergy
antibiotic  susceptibility test of Cefotaxime (CTX),
Amoxicillin/Clavulanic acid (AMC) and Ceftazidime (CAZ)
antibiotic discs. The isolates were cultured on a Mueller Hinton
agar plate with appropriate antimicrobial-impregnated disks at
35°C overnight. The inhibition zones were measured from the
circumference to the distinct edges from the centre of
inhibitions using a rule. The level of ESBL resistance by K.
pneumoniae and Enterobacter spp were calculated using the
formula (inhibition zone values * 2). The E. coli ATCC 25922
strains were used as a control.
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2.5. Statistical Analysis

The data was validated and analyzed using Excel 2016
(Microsoft Corporation) and GraphPad Prism 9.0.2 software.
The bacteria isolates were classified based on the median
antibiotic inhibition zones into resistant type 0 (resistant-0, no
antibiotic susceptibility), resistant-8, resistant-9, resistant-10,
resistant-11 and resistant-12 (the predominant median
antibiotic inhibition zones were 8, 9, 10, 11 and 12 mm,
respectively for most of the antibiotic tested). A network of
interactions between bacteria isolates and resistant types and
the pattern of interaction of K. pneumonia (in the resistant-10
group) and the various antibiotics tested; was performed using
Cytoscape version 3.8.2 software. The annual pattern of ESBLs
and MDRs among K. pneumoniae and Enterobacter spp were
tested using the Chi-square test with p<0.05 considered as
statistically significant.

3. RESULTS

3.1. Demographic Characteristics of the Study Subjects

In all, 230 subjects that visited the University of Cape
Coast hospital had Enterobacter spp. and/or K. pneumonia
bacteria isolated from their clinical samples from January 2014
to April 2020. The median (range) age/years of the subjects
were 25 (5-73), 27 (1-60), 33 (5-83), 32 (10-85), 26 (10-73), 29
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(3-90) and 24 (1-70) for 2014, 2015, 2016, 2017, 2018, 2019
and 2020, respectively. The majority of the subjects were
females 197/230 (85.65%) and males representing 33/230
(14.35%). Most of the pathogens were isolated from urine
samples followed by high vaginal swabs (HVS) samples.
Overall, Enterobacter spp was the most isolated pathogen
132/230 (57.39%) followed by K. pneumonia 98/230 (42.61%)
(Table 1).

3.2. Pattern and Network of Interactions between
Antibiotic Resistance and Bacteria Isolates from 2014 to
2020

The bacteria isolates from 2014 to 2020 at the University
of Cape Coast hospital were classified into resistant types
(resistant-0, resistant-8, resistant-9, resistant-10, resistant-11
and resistant-12) based on the most predominant median
antibiotic inhibition zone of resistance. The result showed a
clustering network of bacteria isolates around resistant type 10
(resistant-10) and resistant type 12 (resistant-12) (Table S1).
The interactions (edges) of bacteria isolates and resistant types
(nodes) were unique for Staphylococcus saprophyticus, and
Proteus mirabilis which exhibited two patterns of interactions
(resistant-10 and resistant-12), connecting the two resistant
types among the bacteria isolates. The other resistant types
formed smaller clusters of bacteria isolates (Fig. 1).

J

Fig. (1). Clustering of the bacteria isolates around a classified antibiotic resistant-types.
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Table 1. Demographic characteristics of study participants.

Asare et al.

- - - - Years - - -
Parameters 2014 2015 2016 2017 2018 2019 2020
Isolates, N 27 24 41 49 26 51 12
Age, median (range)/yrs 25 (5-73) 27 (1-60) 33 (5-83) 32 (10-85) 26 (10-73) 29 (3-90) 24 (1-70)
Sex, n (F/M) 27 (24/3) 24 (17/7) 41 (39/2) 49 (41/8) 26 (22/4) 51 (43/8) 12 (11/1)
Sample Types, n/N (%) - - - - - - -
HVS 4/27 6/24 10/41 17/49 9/26 16/51 7/12
(14.81) (25.00) (24.39) (34.70) (34.62) (31.37) (58.33)
Urine 22/27 12/24 31/41 32/49 17/26 35/51 5/12
(81.49) (50.00) (74.61) (65.30) (65.38) (68.63) (41.67)
Sputum/Ear ( ;/%) (132/.2;)) - - - - -
3/24
Wound - (12.50) ) - - . -
Bacteria, n/N (%) - - - - - - -
Enterobacter species 20/27 7/24 19/41 22/49 16/26 39/51 9/12
(74.07) (29.17) (46.34) (44.90) (61.38) (76.47) (75.00)
Klebsiella pneumonia 727 1724 22/41 27/49 10/26 12/51 3/12
(25.93) (70.83) (53.66) (55.10) (38.46) (23.53) (25.00)

3.3. Klebsiella pneumonia and Enterobacter species
Resistance and Antibiotic Interaction Network

The interaction network between K. pneumonia
(resistant-10) isolates and antibiotics tested showed that the K.
pneumonia isolates had developed a broader resistance to
multiple antibiotics; fluoroquinolones, aminoglycosides,

G{miﬂoxallin o

carbapenems, monobactams, cephalosporins and extended-
spectrum penicillins. Few K. pneumonia isolates formed lower
clusters of one, two, three and four antibiotic types (Fig. 2).
The interactive network patterns of Enterobacter spp
(resistant-12) and the various antibiotics were different from
the interaction patterns for K. pneumonia (Fig. 3).

Fig. (2). An interactive networks and patterns of antibiotics inhibition zones by resistant K. pneumonia isolates.
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Fig. (3). An interactive networks and patterns of antibiotics inhibition zones by resistant Enterobacter species isolates.

3.4. Multiple Drug Resistance (MDR) and Extended Drug
Resistance (XDR) Patterns among Enterobacter Species and
Klebsiella Pneumonia Bacteria Isolates

The pattern of XDR resistance among the K. pneumonia
isolates is constantly increasing from 2/7 (28.57%) in 2014 to
9/12 (75.00%) in 2019 and 2/3 (66.67%) in 2020. The MDR
resistance among K. pneumonia, on the other hand, has
remained high from 2014 to 2018, with the highest MDR
resistance of 3/4 (75.00%) observed in 2018. In 2019 and 2020,
K. pneumonia exhibited high XDR resistance compared to
MDR resistance. However, the chi-square analysis did not
show any significant differences in the emergence of K.

pneumonia resistance to MDR and XDR. In the case of
Enterobacter spp (resistant-12), MDR resistance was very high
19/20 (95.00%) compared to 1/20 (5.00%) of the XDR
resistance isolates in 2014. However, from 2015 to 2020, most
Enterobacter spp exhibited resistance to XDR compared to
MDR. Chi-square analysis showed a highly significant
difference ¥2 = 11.87, p=0.0006 between MDR and XDR
Enterobacter spp isolates in 2014. Although more of the
Enterobacter spp isolates were resistant to XDR, there was no
significant difference between MDR and XDR except in 2019,
where XDR resistance Enterobacter spp isolates were
significantly different from MDR resistance Enterobacter spp
isolates ¥2 = 7.789, p=0.0053 (Table 2).

Table 2. Trends of MDR and XDR prevalence among Klebsiella pneumonia and Enterobacter species isolates.

- Klebsiella pneumonia n/N (%) - Enterobacter species n/N (%) -
Year MDR XDR %2 P MDR XDR %2 P
2014 5/7 2/7 19/20 1/20

(71.43) (28.57) 0.875 0.3496 (95.00) (5.00) 11.87 0.0006
2015 10/17 7/17 3/7 4/7

(58.82) (41.18) 0.354 0.5518 (42.86) (57.14) 0.095 0.7574
2016 12/22 10/22 9/19 10/19

(54.55) (45.45) 0.121 0.7276 (47.37) (52.63) 0.035 0.8514
2017 15/27 12/27 12/22 10/22

(55.56) (44.44) 0.222 0.6371 (54.55) (45.45) 0.121 0.7276
2018 3/4 1/4 6/9 3/9

(75.00) (25.00) 0.685 0.4076 (66.67) (33.33) 0.675 0.4113
2019 3/12 9/12 9/39 30/39

(25.00) (75.00) 2.057 0.1515 (23.08) (76.92) 7.789 0.0053
2020 1/3 2/3 3/9 6/9

(33.33) (66.67) 0.225 0.6353 (33.33) (66.67) 0.675 0.4113
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Table 3. The prevalence of antibiotic resistance among Klebsiella pneumonia and Enterobacter species isolated from 2014 and

2020.
N _ | - - | - Antibiotic Resistance n (%) | - - | - - -
- 2014 2015 2016 2017 2018 2019 2020 -
Antibiotics Klebﬂe"f‘ Enterobacter| pKnleel:Jns:::?a Enterobacter Klebsiellf\ Enterobacter KIEhSie"? Enterobacter| pI;l::"s:s:?a Enterobacter Klebsiellf\ Enterobacter KlebSie"? Enterobacter
N (=7 sp (n=20) (n=17) sp(n=7) | (n1=22) sp (n=19) | (n=27) sp (n=22) (n=4)$ sp (n=9)* |* (n=12) sp (n=39) | (n=3) sp (n=9)
Ceftriaxone 1(14.29) - 3 (17.65) - - 3(15.79) 6(22.22) 3 (13.64) 1(25.00) 1(11.11) 1(8.33) 11(28.21) | 1(33.33) 5 (55.56)
Levofloxacin 3 (42.6) 3 (15.00) - - 3(13.64) 4(21.05) 7(25.93) 3(13.64) - - 1(8.33) 9 (23.08) - -
Ceftazidime 2(28.57) - 4(23.53) 3(42.6) 2(9.09) 2(10.53) 6(22.22) 3 (13.64) - 1(11.11) 4(33.33) | 14(35.90) | 1(33.33) 5 (55.56)
Ciprofloxacin 2(28.57) 7 (35.00) 1(5.88) 1(14.29) 3(13.64) 3(15.79) 2(7.41) - - 1(11.11) 2(16.67) | 18(46.15) - 5(55.56)
Gentamicin 1(14.29) 8 (40.00) 5(29.41) 1(14.29) 6(27.27) 6(31.58) 9(33.33) | 13(59.09) - - 6 (50.00) 9(23.08) - -
Cefuroxime 1(14.26) - 5(29.41) - 5(22.73) 3 (15.79) 7(25.93) 3(13.64) - 2(22.22) - 13 (33.33) | 2(66,67) 4 (44.44)
Chloramphenicol 4 (57.14) 1(5.00) 5(29.41) 4 (57.14) 1(4.55) 3(15.79) 7(25.93) 5(22.73) - 1(11.11) 1(8.33) 5(12.82) - 1(11.11)
Ampicillin 1(14.29) - 8 (47.06) 4(57.14) 7(31.82) 2(10.53) | 14(51.85) | 7(31.82) - 3(33.33) 4(33.33) | 17(43.59) | 2(66.67) 5 (55.56)
Trimethoprim/
2(2857) | 7(35.00) | 8(47.06) | 3426) | 6727 | 4105 |[1348.15 | 7(31.82) 3(33.33) | 3(25.00) | 10(25.64) 3(33.33)
Sulfamethoxazole
Nitrofurantoin 1(14.29) 9 (45.00) 1(5.88) 1(14.29) 3(13.64) 2(10.53) 9(33.33) 8(36.36) 2 (50.00) 2(22.22) 3(25.00) 5(12.82) - 2(22.22)
Amoxicillin/
- - 1(14.29) 2(10.53) 2(50.00) 2(22.22) 1(11.11)
Clavulanic Acid
Piperacillin/
1(14.29) 13(59.09) | 11(57.89) | 6(22.22) 7(31.82) 1(25.00) 5(55.56) 3(25.00) | 10(25.64) 1(11.11)
Tazobactam
Cefuroxime 1(14.29) - 1(5.88) - 6(27.27) 4(21.05) 8(29.63) 8 (36.36) 1(25.00) 1(11.11) 5(41.67) | 13(33.33) | 1(33.33) 2(22.22)
Norfloxacin 1(14.29) 2(10.00) 1(5.88) 1(14.29) 4(18.18) 4(21.05) 4(14.81) 6(27.27) - - 2(16.67) | 12(30.77) - -
Tetracycline 3(42.6) 16 (80.00) | 9(52.94) 6(85.71) | 18(81.82) | 15(78.95) [19(70.37) | 15 (68.18) - 7(77.78) 4(33.33) | 26(66.67) | 1(33.33) 3(33.33)
Nalidixic Acid 1(14.29) | 11(55.00) - 1(14.29) | 11(50.00) | 10(52.63) | 5(18.52) 8(36.36) - 1(11.11) 4(33.33) | 13(33.33) | 1(33.33) -
Augmentin 1(14.29) | 11(55.00) | 4(23.53) 3(42.6) 14 (63.64) | 11(57.89) [10(37.04) | 12(54.55) | 3(75.00) 4 (44.44) 6(50.00) | 16(41.03) - 2(22.22)
Gemifloxacin 11429 | 1500 - - - - - - - 1(11.11) - - 1(11.11)
Ampicillin-sulbactam| 1 (14.29) 7 (35.00) - - - - - - - - - - - -
Ceftazidime - 1(5.00) 3 (17.65) 1(14.29) 8 (36.36) 8 (42.11) 6(22.22) 7(31.82) 1(25.00) 2(22.22) 5(41.67) | 16(41.03) | 1(33.33) 1(11.11)
Meropenem - - 4(23.53) 3(42.6) 5(22.73) 5(26.32) 8(29.63) 4(18.18) - 2(22.22) 3(25.00) | 11(28.21) | 1(33.33) 4 (44.44)
Vancomycin - - 5(29.41) 2(28.57) 7 (31.82) 4(21.05) 9(33.33) 3(13.64) - 3(33.33) 2(16.67) 8(20.51) 1(33.33) 1(11.11)
N-acetylcysteine - - - - - 1(5.26) - - - 1(11.11) - - - -
Cefdinir - - - - - 1(5.26) - - - - - - - -
Cephalothin - - - - - 3(15.79) - 3(13.64) - 1(11.11) - 3(7.69) - -
Penicillin - - - 1(14.29) 1(4.55) - 1(3.70) - - - - - - -
Erythromycin - - - 1(14.29) 1(4.55) - - - - - - - - -
Ofloxacin - - - - - - 1(3.70) 2(9.09) - - - - - -
Amikacin - - - - - - 1(3.70) - - - - 1(2.56) - -

Note: $ Antibiotic susceptibility test carried on 4 out of 10 Klebsiella pneumonia isolates.

* Antibiotic susceptibility test carried on 9 out of 16 Enterobacter species isolates.

3.5. Antibiotic Resistance Pattern among Enterobacter
species and Klebsiella pneumonia Isolates

K. pneumonia isolates were highly resistant to levofoxacin
3/7 (42.6%), chloramphenicol 4/7 (57.14%), and tetracycline
3/7 (42.6%) in 2014. The K. pneumonia isolates were observed
to have developed resistance to many of the commonly used
antibiotics in the market from 2015 to 2017 and 2019. K.
pneumonia resistance to tetracycline 9/17 (52.94%) in 2015;
piperacillin/tazobactam 13/22 (59.09%), tetracycline 18/22
(81.82%), nalidixic acid 11/22 (50.00%), augmentin 14/22
(63.64%) in  2016; ampicillin  14/27  (51.85%),
trimethoprim/sulfamethoxazole 13/27 (48.15%), tetracycline
19/27 (70.37%) in 2017; nitrofurantoin 2/4 (50.00%),
amoxicillin/clavulanic acid 2/4 (50.00%) and augmentin 3/4
(75.00%) in 2018; gentamycin 6/12 (50.00%), and augmentin
6/12 (50.00%) in 2019 and cefuroxime 2/3 (66.67%) and
ampicillin 2/3 (66.67%) were very high across the study
periods (Table 3).

On the other hand, Enterobacter spp were highly resistant
to tetracycline 16/20 (80.00%), nalidixic acid 11/20 (55.00%),
and augmentin 11/20 (55.00%) in 2014; chloramphenicol 4/7
(57.14%), ampicillin 4/7 (57.14%), and tetracycline 6/7
(85.71%) in 2015; piperacillin/tazobactam 11/19 (57.89%),
tetracycline 15/19 (78.95%), nalidixic acid 10/19 (52.63%),
and augmentin 11/19 (57.89%) in 2016; gentamycin 13/22
(59.09%), and tetracycline 15/22 (68.18%) in 2017;

piperacillin/tazobactam 5/9 (55.56%), and tetracycline 7/9
(77.78%) in 2018; tetracycline 26/39 (66.67%) in 2019 and
ceftriaxone 5/9 (55.56%), levofloxacin 5/9 (55.56%),
ceftazidime 5/9 (55.56%), gentamycin 5/9 (55.56%), and
ampicillin 5/9 (55.56%), in 2020 (Table 3).

4. DISCUSSION

Enterobacter spp and K. pneumonia have developed
resistance to almost all known antibiotics [37]. There is a
report of increasing high resistance to third and fourth-
generation cephalosporins [38]. Although ESBL-resistant
Enterobacter spp such as E. cloacae and E. aerogenes are
generally susceptible to carbapenems, there is growing
resistance to most of them except Meropenem and Imipenem
[39 - 41]. Also, carbapenem-resistant Enterobacter (CRE) and
carbapenem-resistant K. pneumoniae infections are susceptible
to polymyxins, tigecycline, meropenem, fosfomycin,
gentamicin, ceftazidime/avibactam and other co-carbapenems
antibiotic agents [42, 43]. Antibiotic-resistant Enterobacter spp
and K. pneumonia are reducing treatment options leading to
“difficult-to-treat” high morbidity and mortality cases [44]. The
study reports an eight-year antibiotic resistance trend among
the Enterobacter spp and K. pneumonia isolates from the
University of Cape Coast hospital.

K. pneumonia formed a network with a group of bacteria
isolates that exhibit phenotypically similar antibiotic resistance
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inhibition patterns (belonging to resistant type 10; median
antibiotic inhibition zone is 10), whereas Enterobacter spp
formed a clade with other bacteria isolates with resistant type
12. Thus, K. pneumonia and Enterobacter spp phenotypically
exhibit differences in antibiotic resistance characteristics [45].
Interestingly, S. saprophyticus and P. mirabilis exhibited
characteristics of both resistant-10 and resistant-12. However,
resistant type 10 and type 12 are not distinctive in terms of
their resistant categorization into MDR or XDR. Both resistant
types were either MDR or XDR species. Although both K.
pneumonia and Enterobacter spp have developed resistance to
several antibiotics, the underlying mechanisms may be
multifaceted and different [45]. The interactive network of K.
pneumonia or Enterobacter spp and the various antibiotics
showed that most antibiotics have similar median and range in
the zone of inhibitions.

The pattern of MDR and XDR among the isolates showed
the rapid development of XDR. MDR-resistant K. pneumonia
was consistently high from 2014 to 2018 while XDR resistance
became high in 2019. However, XDR-resistant Enterobacter
spp had remained high compared to MDR resistance except in
2014. The high prevalence of XDR K. pneumonia and
Enterobacter spp pose a tremendous challenge to treatment
options and may require prolonged antibiotic treatment [42,
46]. XDR-resistant FEnterobacter spp and K. pneumonia
infections should be of public health significance as these
resistant pathogens are not only resistant to multiple antibiotic
agents but likely all clinically proven antibiotics [47, 48].

MDR and XDR K. preumonia and Enterobacter spp are a
threat to the public health system in Ghana as they are
significant risk factors for severe illness with high mortality
[49]. The recent outbreak of K. pneumonia producing NDM-1
and OXA-48 in Germany with increased virulence, high
transmission and antibiotic resistance indicates global health
importance that requires constant surveillance and prompt
implementation of enhanced control measures to prevent the
spread [50 - 52].

The study showed that Enterobacter spp and K. pneumonia
isolates were highly susceptible to fluoroquinolones
(levofloxacin, Norfloxacin, Gemifloxacin and ofloxacin), beta-
lactams (ampicillin-sulbactam and amoxicillin-clavulanic
acid), aminoglycoside (Amikacin), macrolide (erythromycin),
penicillin, N-acetylcysteine, and cephalosporin (cefdinir)
antibiotics. Although ampicillin-sulbactam resistance has been
recorded in beta-lactamase-producing Enterobacteriaceae such
as E. coli, amoxicillin-clavulanic acid remains an effective
therapy against such pathogens [53, 54]. Interestingly, these
antibiotics were largely effective against the MDR and XDR-
resistant K. pneumonia and Enterobacter spp isolates from the
University of Cape Coast hospital. Though the isolated MDR
and XDR FEnterobacter spp and K. pneumonia are still
susceptible to the above antibiotics, resistance against these
antibiotics can rapidly develop [55 - 57].

Constant risk assessment of MDR and XDR carbapenem-
resistant Enterobacteriaceae and updates on the prevalence of
antibiotic resistance patterns are necessary preventive and
control measures [56, 58]. Again, meropenem and gentamicin
which have shown to be effective against XDR carbapenem-
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resistant Enterobacteriaceae were highly resisted among the
isolated pathogens in this study. The limited treatment options
for antibiotic-resistant Enferobacteriaceae necessitated the
WHO to declare Enterobacteriaceae a critical and priority
pathogen for research, discovery and development of new
antibiotics [3, 46, 57]. The state of antibiotic-resistant
Enterobacter spp and K. pneumonia requires a nationwide
reassessment of antibiotic treatment options.

Two large clusters of bacteria networks of interaction
around resistant-10 and resistant-12 (nodes). The resistant
types are classified based on the frequencies of median
antibiotic inhibition zones; Resistant-0 (no antibiotics were
tested), Resistant-8 (most antibiotics had inhibition zone of 8
mm), Resistant-9 (most antibiotics had inhibition zone of 9
mm), Resistant-10 (most antibiotics had inhibition zone of 10
mm), Resistant-11 (most antibiotics had inhibition zone of 11
mm) and Resistant-12 (most antibiotics had inhibition zone of
12 mm).

The length of each node connecting to K. pneumonia
represents the median (range) antibiotic inhibition zones for
each tested antibiotic.

The length of each node connecting to Enterobacter spp
represents the median (range) antibiotic inhibition zones for
each tested antibiotic.

Several factors may have affected the female-to-male ratio
among the data analyzed; 1. There were more females
attending hospitals compared to males, however, the reason is
not well understood, but it is believed females take a keen
interest in their health compared to males as it is a general
trend with most of the healthcare data, 2. The nature of samples
for microbiological data was (36.5% were vaginal samples
which is a bias toward the female gender, and 63.5% were
urine samples 17.5% of which were from males.

CONCLUSION

In conclusion, the study reports the trend of antibiotic
resistance among Enterobacter spp and K. pneumonia isolates
from the University of Cape Coast hospital from 2014 to 2020.
The results show that although there is high MDR and XDR-
resistant Enterobacteriaceae, the pathogens are still susceptible
to a couple of antibiotics tested. The early detection, constant
monitoring and control practices and policies that prevent
misuse or overuse of these antibiotics are required to slow
down the rapid development of resistant Enterobacter species
and Klebsiella pneumonia in Cape Coast.
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