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Abstract:
Backgrounds:
Soils harbor diverse bacteria, and these bacteria play important roles in soil nutrition cycling and carbon storage. Numerous investigations of soil
microbiota had been performed, and the core microbiota in different soil or vegetation soil types had been described. The upper layer of soil, as a
source of organic matter, is important and affected by the habitats and dominant bacteria. However, the complexity of soil environments and
relatively limited information of many geographic areas had attracted great attention on comprehensive exploration of soil microbes in enormous
types of soil.

Methods:
To reveal the core upper layer soil microbiota, soil samples from metropolis and countryside regions in the North China Plain were investigated
using high-throughput sequencing strategy.

Results:
The results showed that the most dominant bacteria are Proteobacteria (38.34%), Actinobacteria (20.56%), and Acidobacteria (15.18%). At the
genus-level, the most abundant known genera are Gaiella (3.66%), Sphingomonas (3.6%), Acidobacteria Gp6 (3.52%), and Nocardioides (2.1%).
Moreover,  several  dominant  operational  taxanomy units  OTUs,  such as  OTU_3 and OTU_17,  were  identified  to  be  associated  with  the  soil
environment. Microbial distributions of the metropolis samples were different from the countryside samples, which may reflect the environments
in  the  countryside  were  more  diverse  than  in  the  metropolis.  Microbial  diversity  and  evenness  were  higher  in  the  metropolis  than  in  the
countryside, which might due to the fact that human activity increased the microbial diversity in the metropolis.

Conclusion:
The upper layer soil core microbiota of the North China Plain were complex, and microbial distributions in these two places might be mainly
affected by the human activity and environmental factors, not by the distance. Our data highlights the upper layer soil core microbiota in North
China Plain, and provides insights for future soil microbial distribution studies in central China.
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1. INTRODUCTION
The soils harbor abundant microbial resources and contain

high  numbers  of  microbes  [1  -  3].  Among  these  microbes,
bacteria play important roles in various aspects, especially in
carbon  storage  and  nutrient  cycling,  for  example,  they  can
promote the cycling of C, N, S, and P, which can help the plant
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grow [4 - 8]. Especially, the upper layer of the soil generally
contains many organic minerals, which are mainly affected by
habitats and soil microbiota [9]. Moreover, soil microbiota can
help remove pollutants and provide most of the antibiotics in
clinical  use  today  [3,  10].  The  environmental  factors  played
important roles in microbial distribution, while the geographic
distances showed little effect on microbial diversity in soil [11
-  14].  A global  analysis  of  drylands indicates  that  increasing
aridity  reduces  soil  microbial  diversity  [11].  The  microbial
community  during  corpse  decomposition  in  different
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vegetation  soil  types  are  similar,  and  the  dominant  factor
driving  microbiota  development  is  the  nitrogen  and  carbon
input  [15].  Moreover,  deforestation  would  affect  the  soil
microbiota and the alpha diversity would be increased after the
slash-and-burn forest cleaning in Amazon [16].

The  microbial  distribution  in  different  biogeographical
areas is different, and the dominant bacteria in soils worldwide
are  Proteobacteria,  Actinobacteria,  Verrucomicrobia,
Acidobacteria  and  Firmicutes  [17,  18].  The  most  dominant
bacteria  in  drylands  are  assigned  to  Actinobacteria,  which
composes 23%-29% of the total  bacteria [11],  and the desert
soil microbiota is distinct from microbiotas of non-desert soils
[19].  In  relatively  undisturbed  soil  samples  collected  from
North America, the most dominant bacteria are Acidobacteria,
Veruucomicrobia and Bacteroidetes [20, 21]. The investigation
of the East European plain soils showed that the most abundant
bacteria  are  Actinobacteria,  Proteobacteria  and
Verrucomicrobia [22]. The soil microbial diversity is affected
by vegetation type, and the rhizospheric microbial distribution
of different plants is distinct [23, 24]. Despite many efforts that
have been tried to understand global soil microbial distribution,
such  as  the  Earth  Microbiota  Project  [25],  the  microbial
distribution  in  many  geographic  areas  is  still  unknown.

Here,  we present  an upper  layer  soil  microbiota  study to
assess  the  microbial  diversity  using  a  high-throughput
sequencing approach in two different areas in the North China
Plain. The sampling places have been used for agriculture for
thousands  of  years,  encompassing  the  countryside  and  the
metropolis.  We  analyzed  the  dominant  microbes  in  these
samples and compared their microbial distribution. Moreover,
the  potential  relationship  between  the  soil  samples  and  the
environmental factors is discussed.

2. MATERIALS AND METHODS

2.1. Sample Collection and Analysis

The  13  soil  samples  were  collected  from  two  different

regions  in  the  North  China  Plain,  Xincai  county  and
Zhengzhou of Henan province, China, in March 2018 (Table
1). Sampled soils are moist clay in these two places (Fig. S1).
Among  them,  7  soil  samples  were  collected  from  Xincai
county (countryside place, named as XC group), and another 6
samples  were  collected  from  Zhengzhou  (metropolis,  about
300  kilometres  from  Xincai,  named  as  ZZ  group).  The  soil
samples  were  collected  from 5-10  cm of  the  soils,  and  were
transferred  to  the  laboratory  and  stored  at  -20  °C before  use
(Table  1).  To  measure  pH,  0.5  g  soil  of  each  sample  was
thoroughly mixed with ml water. The pH was measured with a
digital pH meter (Shanghai Lei-ci Co. Ltd) [26]. Temperature
and  other  soil  parameters  were  collected  from  the  public
database  of  China  meteorological  administration  (Table  1).

2.2. Soil DNA Extraction

Soil  DNA was extracted from 0.5 g soil  of  each sample,
and  the  soil  was  prewashed  with  1  ml  of  0.5  M  EDTA  to
remove  organic  matter  in  the  soil  [27,  28].  The  soil  mixture
was  collected  by  centrifugation  at  12000  rpm  for  5  min.
Prewashed soil precipitates were further treated with 0.6 ml of
0.5  M  CaCl2  and  1.4  ml  of  ddH2O,  and  the  soil  precipitates
were collected by centrifugation at 12000 rpm for 5 min [27].
The pretreated soil was lysed with 1 ml DNA extraction buffer
(100  mM  Tris–HCl,  100  mM  EDTA,  100  mM  sodium
phosphate,  1.5  M  NaCl,  and  1%  (w/v)
cetyltrimethylammonium bromide, pH 8.0), 2 μl proteinase K
(20  mg/ml)  and  200  μl  of  20% SDS under  the  incubation  at
65°C for 2 hours. The crude lysate was centrifuged at 17000 g
for 10 min and the supernatant was collected. The DNA in the
supernatant  was  purified  with  the  equal  volume  of
phenol:chloroform:isoamyl alcohol (25:24:1) for two times and
chloroform:isoamyl  alcohol  (24:1)  for  one  time.  The  final
supernatant  after  purification  was  precipitated  with  0.6
volumes of isopropanol, and the soil DNA were collected by
centrifugation at 12000 rpm for 5 min. The DNA was dissolved
in 30 μl TE buffer with 2 μl RNase (10 mg/ml), and RNA was
removed by incubation at 37 °C for 30 min [29].

Table 1. Characterization of the sampling sites.

Samples Location Habitats Altitude (meters) Mean Annual Precipitation
(mm / year) pH Average Temperature

(°C)
HN-S1 Xincai County Wheat 40 926.7 6.97 15.0
HN-S2 Xincai County Wheat 40 926.7 6.76 15.0
HN-S8 Xincai County Riverside 40 926.7 7.66 15.0
HN-S9 Xincai County Riverside 40 926.7 7.35 15.0
HN-S10 Xincai County Pig Farm 40 926.7 6.24 15.0
HN-S11 Xincai County Pig Farm 40 926.7 7.54 15.0
HN-S12 Xincai County Pig Farm 40 926.7 6.69 15.0
HN-S13 Zhengzhou City Grass 105 632.0 7.81 14.3
HN-S14 Zhengzhou City Grass 105 632.0 7.72 14.3
HN-S15 Zhengzhou City Grass 105 632.0 7.79 14.3
HN-S18 Zhengzhou City Riverside 105 632.0 7.59 14.3
HN-S19 Zhengzhou City Riverside 105 632.0 7.75 14.3
HN-S21 Zhengzhou City Riverside 105 632.0 7.74 14.3
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2.3.  16S  rDNA  gene  Fragment  Amplification  and  Soil
Microbial Community Analyses

The  V3-V4  regions  of  microbial  16S  rDNA  genes  were
amplified  with  primers  of  341F  (5’-CCTAYGGGRB
GCASCAG-3’)  and  806R  (5’GGACTACNNGGGTATCT
AAT-3’). The 25 µl PCR amplification mixture contained 25
ng DNA, 1 µl each primer (10 µM), 0.5 µl dNTP (2.5 mM),
12.5  µl  2*  Vazyme  Phata  max  buffer,  0.5  µl  Vazyme
Polymerase (Vazyme Biotech). The PCR was performed with
an  initial  denaturation  (5  minutes  at  95°C),  followed  by  27
cycles  of  15  seconds  at  95°C,  15  seconds  at  55°C,  and  30
seconds  at  72°C,  and final  with  one cycle  of  5  min at  72°C.
The PCR products were purified with the KAPA Pure Beads
(Roche)  according  to  the  manufacturer’s  instructions  and
further sequenced with an Illumina Miseq system (Illumina).

The  raw reads  were  processed  with  Usearch  fastq_filter,
and the low-quality sequences were removed with the default
parameters  and  the  data  were  further  analyzed  as  described
before  with  the  Usearch  software  [30].  The  operational
taxonomic  unit  was  classified  based  on  97%  identity.  The
principal  coordinates  analysis  (PCoA)  and  Non-metric
Multidimensional Scaling (NMDS) analyses based Unweighted
UniFrac distance were generated by the Vegan 2.4.2 package
in  R  [31].  The  raw  reads  had  been  submitted  to  the  NCBI
Sequences  Read Archieve (SRA) database  and the  accession
numbers were SAMN10602944-SAMN10602956.

3. RESULTS

3.1. Overall Soil Microbial Community Composition

A total  of  13 soil  samples were collected,  and they were
assigned to  be  XC group (HN-S1 to  HN-S12)  and ZZ group
(HN-S13 to HN-S21) (Table 1). For the 13 soil samples, a total
of  716,285  high-quality  16S  rDNA  gene  fragments  were
obtained,  and  they  were  classified  into  4838  operational
taxanomy units OTUs based on 97% identity (Table S1). The
average  sequence  and  OTU  numbers  for  each  sample  were
55099  and  1693,  respectively,  showing  there  was  a  large
number of common OTUs distributed in these 13 soil samples.
The  richness  and  Chao1  indices  of  these  two  groups  were
similar,  indicating  most  microbes  in  the  soil  samples  were
covered by the 16S rRNA sequencing (Table S2) [32, 33]. The
Shannon_2 parameters suggested the diversity in these samples
was high.  Other  indices  of  Simpson,  dominance,  equitability
and rank abundance hinted that the microbial distribution was
not  definite  evenness  and  some  abundant  species  were
available  in  the  soil  samples  (Table  S2).  The  microbial
richness,  Chao1,  Shannon_2,  dominance  and  equitability
parameters  of  samples  in  ZZ  group  were  higher  than  the

corresponding  indices  in  XC  group.  The  microbial  Simpson
parameter of samples in ZZ group was lower than that in XC
group (Table 2).

At the phylum level, the most dominant bacteria in the XC
soil  samples  were  Proteobacteria,  Actinobacteria,
Acidobacteria, and Bacteroidetes, and they composed 44.5%,
15.5%, 12.3%, and 6.1%, respectively (Fig. 1A and Table S3);
while the most dominant bacteria in the ZZ soil samples were
Proteobacteria,  Actinobacteria,  Acidobacteria,  and
Bacteroidetes, and they composed 31.1%, 26.4%, 18.5%, and
2.8%, respectively (Fig.  1A  and Table S3).  According to the
previous  research,  some  phyla  were  classified  as  dominant
phyla  in  the  soil  microbiota  [34].  At  the  genus  level,  312
genera were identified, and 56.6% of all the sequences cannot
be assigned to the known genera, indicating that most bacteria
in these soils were unknown (Table S4). Among the assigned
genera, the most dominant species were assigned to 13 genera
of Gaiella, Sphingomonas, Acidobacteria Gp6, Nocardioides,
Arthrobacter,  Acidobacteria  Gp4,  Acidobacteria  Gp16,
Gemmatimonas,  Rhodanobacter,  Nitrososphaera,
Acidobacteria  Gp3,  Pseudomonas,  and  Streptomyces.  These
dominant  genera  accounted  for  22.7% and  26.5% of  the  XC
group and ZZ group, respectively. Moreover, the distribution
of the genera in these two groups was different (Fig. 1B  and
Table  S4).  For  all  the  13  genera,  the  distribution  of  the  two
groups is different, showing soil microbiota of these two places
are  different  (Fig.  1B  and  Table  S4).  Especially,  the
distribution  of  Sphingomonas,  Acidobacteria  GP6,
Acidobacteria  Gp4,  Acidobacteria  Gp16 and Nitrososphaera
between the two groups showed obvious differences.

3.2. Dominant OTUs in the Microbial Communities

Though most microbes in the samples were uncultured, 7
of the 10 most abundant OTUs showed > 97% identities with
isolated microbes, suggesting the function of these OTUs can
be predicted from the known isolates (Table 3). OTU-4 is the
most  abundant  identified  OTU  in  the  samples,  and  it  is
Sphingomonas limnosediminicola, which mainly distributed in
the wet environment [26]. OTU-1 showed 100% identity with
Pseudarthrobacter phenanthrenivorans, which is isolated from
a  creosote-contaminated  soil  [27].  OTU-3  was  the  3rd  most
abundant OTU distributed in the soils; it composed 15.94% of
microbes  in  HN-S2  [28].  OTU-17  is  Rhodanobacter
spathiphylli,  which  was  firstly  isolated  from  a  compost-
amended  potting  mix  [29].  OTU-9  is  Bradyrhizobium
namibiense, which is a nitrogen-fixing bacterium [30]. OTU-44
is Nocardioides mesophilus, which is firstly isolated from soil
[31].  OTU-94  is  Sphingomonas  aquatilis,  which  is  widely
distributed  in  the  environment.

Table 2. The alpha diversity of 13 soil samples.

Region Richness Chao1 Shannon_2 Simpson Dominance Equitability
XC 1386.3 ± 300 1388.64±300 7.92 ± 0.63 0.018 ± 0.01 0.98 ± 0.01 0.76 ± 0.06
ZZ 2050 ± 265 2051.73±264.6 9.04 ± 0.34 0.0054 ± 0.002 0.99 ± 0.002 0.82 ± 0.02
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Fig. (1). Phylum (a) and genus-level (b) microbial distribution of the two soil groups. Above_phylum and Above_genus mean microbial sequences
can’t be assigned to phylum and genus, respectively.

Table 3. The 10 most dominant OTUs of the 13 soil samples and their closest isolates and clones.

OTU Average
composition

Closest uncultured bacteria
(Accession number) Identity Closest cultured bacteria

(Accession number) Identity

OTU_4 2.93% Uncultured Sphingomonas sp. clone DM8-116 (KC172330.1) 100% Sphingomonas limnosediminicola
03SUJ6 (NR_157773.1) 99%

OTU_1 1.93% Uncultured Actinobacterium clone 89_2_42 (MH478460.1) 100% Pseudarthrobacter phenanthrenivorans
Sphe3 (NR_074770.2) 100%

OTU_3 1.33% Uncultured Xanthomonadaceae bacterium clone T92F04c
(HM447944.1) 99% Chujaibacter soli KIS55-21

(NR_145539.1) 98%

OTU_19 1.10% Uncultured Laceyella sp. clone strain KCTC 3666
(MK121196.1) 100% Dehalogenimonas alkenigignens IP3-3

(NR_109657.1) 86%

OTU_17 1.08% Uncultured Gammaproteobacterium clone S1-051
(KF182794.1) 100% Rhodanobacter spathiphylli B39

(NR_042434.1) 99%

OTU_9 0.96% Uncultured Alphaproteobacterium(LC378491.1) 100% Bradyrhizobium namibiense 5-10
(NR_159233.1) 100%

OTU_44 0.94% Uncultured microorganism clone SGGSWU35(KX925255.1) 100% Nocardioides mesophilus MSL 22
(NR_116027.1) 100%

OTU_2 0.89% Uncultured Chitinophagaceae bacterium clone 516_28
(MF002164.1) 99% Flavitalea antarctica AQ6-291

(NR_157626.1) 94%

OTU_5 0.88% Uncultured bacterium clone OTU_7933 (MH531581.1) 100% Dongia soli D78 (NR_146690.1) 95%

OTU_94 0.80% Uncultured bacterium clone DMA-B01-29(KU886630.1) 100% Sphingomonas aquatilis NBRC 16722
(NR_113867.1) 99%

3.3. Microbial Diversity in Different Soil Samples

PCoA  analyses  based  on  Unweighted  UniFrac  distance
showed that 6 soil samples of HN-S13, HN-S14, HN-S15, HN-
S18, HN-S19 and HN-S21 in ZZ group were clustered together
(Fig. 2A). Meanwhile, HN-S11 and HN-S12 in XC group were
clustered, and another 5 soil samples in the XC group formed
the  third  cluster.  The  NMDS  based  on  Unweighted  UniFrac

distance also indicated similar results. The 6 soil samples in ZZ
group were clustered together,  and another  7  soil  samples  in
the XC group were clustered in two different areas (Fig. 2B).
Both  PCoA  and  NMDS  presented  consistent  beta  diversity
between groups. Besides, the distance between 6 soil samples
in ZZ group and 5 soil samples HN-S1, HN-S2, HN-S8, HN-
S9 and HN-S10 were close in PCoA and NMDS analyses.
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Fig. (2). The PCoA (A) and NMDS (B) based on unweighted Unifrac distance were used to show the bacterial distribution differences among the 13
soil samples.

4. DISCUSSION

The dominant bacteria in these 13 soil samples are similar
to previous soil microbiota investigations in that the dominant
bacteria in soils are Proteobacteria and Actinobacteria [2, 18,
35]. However, the microbial diversity in these 13 soil samples
collected  from  North  China  Plain  is  different  from  the
microbial diversity in the East European plain where the most
dominant  bacteria  are  Actinobacteria  (46.5%)  and
Proteobacteria  (25.6%),  it  might  be  due  to  the  fact  that  the
environmental  factors  between  them  are  distinct  [22].
Moreover,  the  samples  collected  from  the  same  place,
especially  samples  from  XC  group,  were  not  completely
clustered  at  the  phylum  level,  hinting  even  the  microbial
communities  in  the  same  area  with  different  environmental
factors were slightly different (Fig. 1A).

More than 50% of sequences cannot be assigned to known
genera, suggesting most species in soils were uncultured and
investigation  of  upper  layer  soil  microbes  were  valuable  [2,
18].  The  abundance  of  Sphingomonas  genus,  which  has  the
ability to metabolize some pollutants, is higher in soils of XC
group than in soils of ZZ group, hinting the pollutants in XC
are higher than ZZ group. This might be due to the livestock
breeding and other agriculture activities in the rural area (XC)
group [36, 37]. Bacteria from Gaiella genus can reduce nitrate
to  nitrite,  and  its  distribution  in  all  these  two  groups  are
abundant [38], hinting that these samples might contain a high-
level of nitrate. The Rhodanobacter genus can convert nitrate
to  nitrogen,  and  its  distribution  in  HN-S1  and  HN-S11  are
higher than in other samples [39, 40]. This might be due to the
fact that a large amount of nitrate was fertilized in HN-S1 and a
large amount of nitrate was available in HN-S11, which might
derive  from  pig  manure.  Besides,  the  distribution  of
Nitrosophaera  in  ZZ group  is  higher  than  that  in  XC group,
this might be due to the fact that some nitrogenous fertilizers
were added to the soil samples collected in ZZ group.

Most OTUs in the soil samples showed <97% identity with
isolated  bacteria  (Table  3),  indicating  most  species  were

uncultured. Among the top 10 dominant OTUs, OTU-1 is able
to  metabolize  phenanthrene,  suggesting there  might  be  some
phenanthrene in the soils of HN-S8 which harbored high-level
of OTU-1 [41]. OTU-17 is very abundant in HN-S10, HN-S11
and HN-S12 which sampled from a pig farm and is related with
compost, showing this OTU might be functioned in pig manure
pollution  removal.  Some  identified  OTUs,  including  OTU-9
and  OTU-94,  are  correlated  with  soil  nutrient  cycling  and
contaminant  removal  [36,  42],  and  it  might  be  due  to  the
availability of small amounts of pollutants in the soil samples.

The PCoA and NMDS analyses showed consistent sample
classification  based  on  Unweighted  UniFrac  distance,
suggesting  the  sample  classification  based  on  the  microbial
community  was  reliable.  The  bacteria  in  the  ZZ  group  were
more abundant than in the XC group, suggesting that  human
activities in metropolis increased microbial diversity [24, 43].
The big differences between HN-S11, HN-S12 and another 11
soil  samples  might  attribute  to  that  the  input  of  pig  manure
from  HN-S11  and  HN-S12  changed  soil  nutrition.  The
microbial  distribution  of  HN-S10  was  different  from  that  of
HN-S11 and HN-S12, as the pig farm had been abandoned for
a few months before we sampled HN-S10, suggesting that the
potential pig manure effects on soil microbial distribution had
disappeared  [15].  As  the  pH  and  precipitation  of  all  the
samples are nearly the same (Table 1), the soil microbiota of
ZZ  group  and  XC  group  except  HN-S11  and  HN-S12  are
similar, despite the distance between ZZ group and XC group
is 300 kilometers. This soil microbiota similarity demonstrates
similar  pH  and  precipitation  might  result  in  similar  core
microbiota  [11,  13,  19,  44].

CONCLUSION

In summary, we investigated the microbial diversity of 13
soil samples collected from North China plain and found that
Proteobacteria,  Actinobacteria,  Acidobacteria,  and
Bacteroidetes  were  the  dominant  bacteria.  Moreover,  the
microbial species in the North China plain was similar, but the
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microbial  distribution was different,  indicating different  area
would  have  a  different  core  microbiome.  Input  of  nutrition,
such  as  pig  manure  of  HN-11  and  HN-12,  to  the  soil  would
change  soil  microbial  distribution,  showing  environmental
factors  are  the  key  ecosystem  driving  roles  for  microbial
distribution.
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